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EXECUTIVE SUMMARY  
The mission of the National Institute for Congestion Reduction (NICR) is to provide multimodal 
congestion reduction strategies that leverage advances in technology, “big data” science, and 
innovative transportation options to optimize the efficiency of the transportation system for all 
users, specifically those battling congestion on freeway corridors, as stated in its Fourth Pillar. 
NICR 4-3: Corridor-Wide Surveillance Using Unmanned Aircraft Systems (UAS) is a joint 
research effort formed between the University of South Florida (USF) and the University of 
Puerto Rico at Mayaguez (UPRM).  

The motivation for this research was the lack of a protocol to apply an Unmanned Aerial Vehicle 
(UAV) (drone) platform for traffic data collection and effectively analyze and evaluate incidents 
in high-speed multi-lane and freeway corridors. The ultimate purpose of this study is to integrate 
the use of drones in real-time incident detection to assist in reducing congestion and delay, 
improve traffic operations, and enhance overall safety in the corridor and contiguous surface 
transportation networks. 

The research approach of the project consists of a comprehensive literature review, the selection 
and acquisition of drones and drone training to develop the protocol, data collection using the 
drone platform and dual sensing technologies, and evaluation of vehicle detection algorithms.  

A comprehensive literature review was conducted to document the findings of existing research 
relevant to the use of drones in traffic management. Transportation topics such as freeway 
facilities, level of service, bottlenecks, and freeway management were reviewed for a better 
understanding of the project. The use of UAS and their application was also reviewed, including 
the 14 CFR Part 107 regulation, safety concerns, restrictions, and specifications regarding the use 
of UAS. This literature review also included experiment design for data collection, comparison 
of different sensing technologies, and real-time vehicle detection algorithms.  

Two types of drone capabilities were selected for this research project—Red Green Blue (RGB) 
camera (standard vision) and infrared (thermal) camera capabilities. The teams identified and 
purchased different drones that met those requirements—Autel Evo II 8K, Autel Evo II Pro 6K, 
Autel Evo II Dual 640T, and the DJI Mavic 2 Enterprise Advanced. The University of Puerto 
Rico at Mayaguez (UPRM) research team completed hands-on drone training to understand the 
different controls and commands to safely fly a UAS. The University of South Florida (USF) 
team assembled training materials for preparation in taking the Unmanned Aircraft General – 
Small (UAG) exam, part of the 14 CFR Part 107 requirements to become a certified remote pilot. 
The training also helped to develop and calibrate the before, during, and after procedures for 
flying a drone, which were integrated into the protocol. 

The research team proposed a protocol for the safe use of small UAVs (sUAVs) that complies 
with 14 CFR Part 107. The protocol was developed with three main parts—before, during, and 
after flight. Before flight includes explaining the procedure to ensure the safety of the team in 
preparation for the flight. During flight, the pilot and team must be aware of the environment to 
be able to act appropriately. After flight, the team ensures that everything was handled 
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appropriately with all the safety precautions and that information collected is secure. For each 
part, a prompt list was developed describing the items and actions to take.  

Next, a general framework was developed, which describes the experiment design for the data 
collection of the research project. It consists of seven steps—recognition of and statement of the 
problem; choice of factors, levels, and ranges; selection of the response variable; choice of 
experimental design; performing the experiment; statistical analysis of the data; and conclusions 
and recommendations. The USF team explored real-time vehicle detection algorithms for both 
visual and infrared cameras and conducted experiments comparing their performance. RGB 
videos and thermal videos were collected from a UAS platform along highways in the Tampa, 
Florida, area. Experiments were designed to quantify the performance of a real-time background 
subtraction-based method for vehicle detection from a stationary camera on hovering UAVs 
under free-flow conditions. Several parameters were varied in the experiments based on the 
geometry of the drone and sensor relative to the roadway. The results for stationary data (with 
UAV hovering at a fixed location) show that a background subtraction-based method can 
achieve good detection performance on RGB images (F1 scores around 0.9 for most cases), and 
more varied performance was seen for thermal images with different azimuth angles. The results 
of these experiments will help inform the development of protocols, standards, and guidance for 
the use of drones to detect highway congestion and provide input for the development of incident 
detection algorithms.  

As part of Phase II of this project, the team will continue processing RGB and thermal video data 
from moving stations at different speeds and different locations in Tampa and Mayagüez and 
will compare the performance of vehicle detection algorithms. The team also will work on 
developing algorithms to identify non-recurrent congestion that could be caused by incidents. 
Finally, the team will discuss with local Traffic Management Centers (TMCs) the potential 
implementation of the drone platform for traffic data collection and algorithms for identifying 
incidents in real-time.  

COVID-19 has greatly affected how people live and function, but UAVs have proven that they 
can work during a pandemic to ameliorate certain aspects of everyday life. In the first year of this 
research project, the progress was compromised and paused due to the four-month quarantine in 
Puerto Rico and Florida; starting in March 2020, citizens could not leave their homes unless it 
was considered necessary, such as grocery shopping and visiting pharmacies, hospitals, hardware 
stores, etc. However, the team worked on the comprehensive literature review, obtained 14 CFR 
Part 107 Remote Pilot Certificates, identified variables for the experiment design, and developed 
a protocol to ensure the safe use of UAS.  
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CHAPTER 1: INTRODUCTION 
1.1 BACKGROUND  

Congestion usually relates to an excess of vehicles on a portion of a roadway at a particular time, 
resulting in slower speeds—sometimes much slower—than normal or “free flow” speeds. 
Congestion often means stopped or stop-and-go traffic (FHWA 2020). Congestion generally is 
caused by seven factors—traffic incidents, work zones, weather, fluctuations in normal traffic, 
special events, traffic control devices, and physical bottlenecks. When the capacity of a highway 
section is exceeded, traffic flow breaks down, speeds drop, and vehicles crowd together. These 
actions cause traffic to back up behind the disruption (FHWA 2020). There are three types of 
traffic flow behavior that will cause traffic flow to break down—“bunching” of vehicles as a 
result of reduced speed, intended interruption to traffic flow, and vehicle merging maneuvers 
(FHWA 2020). 

Surface transportation system users have developed strategies to deal with increased congestion 
and reduced reliability. For this, the use of technologies in the transportation field is critical to 
implement. Unmanned Aerial Vehicles (UAVs) (drones) can be such a tool for battling 
congestion in selected corridors. UAVs were first used for military purposes; as of 2006, the 
Federal Aviation Administration (FAA) allowed their use in the US civilian airspace due to the 
devastation caused by Hurricane Katrina (Daly, 2012-2020). Figure 1 shows the trend of the use 
of these vehicles throughout the years, starting in 1849 as an explosive balloon in Austria (Faraz, 
2018). These vehicles currently provide a platform that can carry cameras and sensors for 
collecting real-time traffic information, especially for corridors under congested conditions, 
when traditional loop detectors do not work properly, and where there is a lack of other means of 
traffic monitoring. As an alternative, Road Rangers continuously patrol the roadways monitoring 
traffic crashes and stranded motorists to respond to those incidents. Continuously patrolling 
along roadways in this manner is both costly and man-power intensive.  

The use of UAS has grown significantly in the US and worldwide. The FAA recognizes 
recreational and commercial primary classifications for drones—recreational drones are used for 
public enjoyment and commercial drones are used for inspection of facilities, emergency 
response, cinematography/film industry, traffic enforcement, incident management, medical 
product delivery, and military operations, among others. Figure 2 illustrates the trend of the use 
of UAS in the US (FAA, 2021).  

On December 21, 2015, the FAA online registration system for recreational UAS went into 
effect, and almost 990,000 recreational UAS owners had registered as of December 2019. 
Commercial drone online registration opened in April 2016; since then, over 385,000 drones 
have been registered. In 2016–2018, commercial drone registrations increased slightly, with 
about 90,000 registrations, and rapidly grew in 2018–2019, with about 300,000 registrations 
(FAA, 2021).  
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Figure 1: Timeline of Drones and Their Applications 

Source: Adapted from Faraz, 2018 
 

 
Figure 2: Cumulative Online Commercial and Recreational sUAS Registration, 2015–2019  

Source: Adapted from FAA Aerospace Forecast 

UAVs are increasingly being used by state and local transportation agencies for a variety of 
purposes. Infrastructure inspection and disaster management (e.g., rockfall inspection, damage 
assessment, flood/ice jam monitoring, etc.) are the most common applications of UAVs by these 
agencies, but there is increasing interest in using the technology to monitor traffic in real time 
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(Plotnikov et al., 2018). The US Department of Transportation (USDOT) developed a survey to 
determine how state DOTs were using UAS. The results were divided primarily into the 
categories of inspections, surveillance, research, studies, surveying, and data collection. Figure 3 
shows all US states where UAVs are used according to that survey. By 2018, 39 of 50 states, 
including Puerto Rico and Florida, were using UAVs daily, primarily for bridge inspections, 
representing 53 percent of total inspections performed. Other uses include roadway conditions 
inspection at 18 percent and rockfall, airport, high mast pole, solar panel, and structural 
inspections at 6 percent each, as shown in Figure 4(a).  

 
Figure 3: State DOT Drone Usage Survey 

Source: Adapted from WTKN, 2021 

The Southeastern region represents 29 percent of total inspections performed in the US (Figure 4 
(b)), but 42 percent of the activities in that region are inspections, followed by research and 
surveillance at 17 percent each and study, data collection, and surveying at 8 percent each. 
Inspections performed in this region include bridges, on-water bridges, high mast poles, and 
other structures, and studies conducted are on rights-of-way and feasibility to promote traffic 
safety. The surveillance and monitoring performed pertained to incident scenes, namely airborne 
and airport obstruction assessments.  
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(a) 

 

 
(b) 

 
Figure 4: UAV Use in US: (a) Inspections, (b) Use in Southeastern US 

In Puerto Rico, the use of UAVs is growing rapidly. Government agencies and the private sector 
use them for inspections, assessments, photogrammetry, 3D mapping, crash reconstruction, 
design and construction, and emergency response. After Hurricane Maria in 2017, UAVs were 
an important tool for assessment of damages.  

Traditionally, vehicle loop detectors, radar detectors, cameras, and other conventional sensors 
are used for measuring and monitoring traffic conditions; however, they are limited to fixed sites. 
Roadway incidents cause a reduction of road capacity and lead to significant congestion and 
vehicle delay if not addressed quickly. Automated detection of incidents with traditional sensors 
has been developed but is not applied widely. Road Rangers continuously patrol roadways, 
looking for collisions and stranded motorists and responding to those incidents, but continuously 
patrolling roadways is both costly and manpower-intensive. UAVs offer the opportunity to 
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rapidly and autonomously reconnoiter large sections of roadway, with minor investment in fixed 
infrastructure. Using UAVs, sensors such as regular and infrared (thermal) cameras can collect 
traffic information, and real-time incident detection algorithms can be developed for prompt 
response to detected incidents.  

The mission of the National Institute for Congestion Reduction (NICR) is to provide multimodal 
congestion reduction strategies that leverage advances in technology, “big data” science, and 
innovative transportation options to optimize the efficiency of the transportation system for all 
users, specifically those battling congestion on freeway corridors as stated in its Fourth Pillar. 
NICR funded this research project at the University of South Florida (USF) and the University of 
Puerto Rico Mayaguez (UPRM) to address the lack of a protocol ensuring the safe use of UAS in 
transportation applications, conduct an in-depth investigation of the performance of vehicle 
detection algorithms with data collected from different sensing technologies, and develop 
effective real-time incident detection methods for high-speed multi-lane and freeway corridors. 
The research was planned for two phases; this report summarizes the research efforts of Phase I. 

1.2 RESEARCH OBJECTIVES 

Phase I of the joint UPRM/USF research consists of three main objectives—1) to develop a 
protocol for the use of UAS; 2) to monitor freeway traffic conditions that complies with 14 CFR 
Part 107 of FAA regulations and ensure the effective and safe use of drones for monitoring 
corridor-wide traffic conditions; and 3) to identify suitable drones, sensor technologies, and 
operational parameters by comparing the performance of vehicle detection algorithms using the 
data collected via a rigorous experimental design. These objectives will serve the ultimate 
purpose of the research project, which is to integrate the use of drones in real-time incident 
detection to assist in reducing congestion and delay and to improve traffic operations and overall 
safety in the corridor and contiguous surface transportation networks. 

1.3 ORGANIZATION OF REPORT 

This report is organized in six chapters:  

x Chapter 1 introduces the previously-presented objectives and scope of the research 
project, and the organization of the report.  

x Chapter 2 discusses the comprehensive literature review of pertinent research and 
previous studies relevant to the use of drones in surface transportation activities; topics 
such as object detection, congestion reduction, incidents, bottlenecks, UAS, among 
others, are included.  

x Chapter 3 describes the research methodology.  
x Chapter 4 describes protocols and is divided into three parts: before, during and after 

flight. These three stages of flying a drone are described, and each has a check list to be 
used for the safety of the team and for the equipment.  

x Chapter 5 describes the general framework and includes the selection of the drones for 
the research project, drone training, and data collection. The experimental data collection 
and analysis followed the seven step guideline described in Montgomery (2013), 



6 
 

including recognition and statement of the problem, choice of factors/levels/ranges, 
selection of variables, choice of experimental design, performing the experiment, 
statistical analysis of the data, and conclusions and recommendations. As noted, in 
practice Step 2, choice of factors/levels/ranges, and Step 3, selection of variables, are 
often done simultaneously or in reverse order. In this project, these two steps were done 
simultaneously. In Phase I, traffic data from stationary UAV (i.e., drones hovering at a 
fixed location) and dual sensing systems (RGB and thermal cameras) were analyzed. 
Performance metrics such as Precision and Recall were used to measure the performance 
of vehicle detection algorithms for the data collected with different heights of a drone 
above ground, angle of depression, and azimuth of the sensor relative to the roadway. 
The data analysis will be continued in Phase II in addition to other tasks to understand the 
impacts of other parameters, e.g., drone speed, ambient lighting, and level of traffic 
congestion, on the performance of learning-based vehicle detection algorithms.  

x Chapter 6 includes conclusions and recommendations based on findings from the 
literature review, drone training, protocol developed, and data collection and analysis 
outcomes.  
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CHAPTER 2: LITERATURE REVIEW 
This chapter presents a comprehensive literature review that focused on three main research 
areas—surface transportation topics, UAV applications and specifications, and experiment 
design. The technical reports reviewed consisted of studies from other professionals, researchers, 
federal and state agencies, web pages, regulations, manuals, surveys, and conferences 
proceedings.  

2.1 SURFACE TRANSPORTATION TOPICS 

The first research area concentrated on fundamental transportation topics associated with urban 
congestion, level of service (LOS), queue length, incident management, freeway segment, and 
capacity. It also includes the seven sources of congestion reported by FHWA (traffic incidents, 
work zones, weather, fluctuations in traffic, special events, traffic control devices, and physical 
bottlenecks). Freeway segment aspects such as their elements, major dimensions, and attributes 
were also considered. The main goal of this comprehensive literature effort was to gain a better 
understanding of the different sources of congestion and how to address it.  

The Highway Capacity Manual (HCM) defines a freeway as a divided highway with full control 
of access and two or more lanes for the exclusive use of traffic in each direction (FHWA, 2017). 
Freeways are composed of a basic freeway, ramp junction, and weaving segments. A basic 
freeway segment consists of areas without the influence of a ramp or another segment. Weaving 
segments are formed when a merge area is closely followed by a diverge area or when an on-
ramp is closely followed by an off-ramp and the two are joined by an auxiliary lane (TRB, 
2000). On freeways, all entering and exiting maneuvers take place on-ramps that are designed to 
facilitate the smooth merging of on-ramp vehicles into the freeway traffic stream and smooth 
diverging of off-ramp vehicles from the freeway traffic stream onto the ramp (TRB, 2000). 
Figure 5 shows the segmentation of a freeway facility. 

The Greenshields model, used to determine the LOS of roadway segments, was studied for 
possible incorporation in the proposed research study. The model, which dates to 1935 
(Greenshields, 1935), is still taught in Transportation Engineering classes and explains the 
relationship between the variables of traffic flow, vehicle speed, and traffic density. This model 
is a macroscopic approach based on the hypothesis that the relationship between speed and 
density is linear with a negative slope—as density increases, vehicle speed decreases. As traffic 
flow can be described as the multiplication of density times speed, equations for the relationships 
between flow and density as well as flow and speed can also be developed. The latter 
relationship is mainly used to determine the LOS for highway segments (Hoel et al., 2008).  

LOS is a qualitative measure that describes the performance of highways that are operating at 
volumes less than the capacity of the highway itself. It consists of a grade-system from A 
through F and considers how the conditions of the highway are perceived by the drivers (Hoel et 
al., 2008). LOS A indicates free-flow speeds and optimal conditions; thus, drivers are influenced 
by the geometric characteristics of the highways. As vehicle volume (i.e., traffic flow) increases, 
density increases as well but vehicle speeds decrease, thus changing the LOS of the highway. 
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LOS F indicates when the traffic volume exceeds the capacity of the highway; queues form, and 
the highway operations are “highly unstable.” 

  
 

Figure 5: Conversion of Freeway Section into Freeway Segment  
Source: HCM, 2000 

The LOS for freeway segments is determined by the density obtained from the slope of the 
relationship between flow and speed, as shown in Figure 6. A range of densities corresponds to 
each LOS, i.e., densities of 0–11 passenger-cars per mile per lane (pc/mi/ln) represent a LOS A, 
11–18 pc/mi/ln are LOS B, and so on. Once the density reaches 45 pc/mi/ln, the LOS is F and 
congestion forms. Incidents in freeway segments that result in a lane closure or slower speeds 
affect the operational performance of the highway even if traffic volume has not increased.  

Traffic congestion is usually the result of traffic demand exceeding capacity. According to the 
HCM (2016), the definition of capacity establishes using “the maximum sustainable flow rate at 
which vehicles reasonably can be expected to traverse a point or uniform segment of a lane or 
roadway.” The definition also specifies that environmental and physical conditions should be 
taken into consideration to calculate capacity. Therefore, a basic model to analyze traffic 
congestion in corridors should include determining both demand and capacity. 
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Figure 6: LOS for Freeway Segments  

Source: HCM, 2010 

In the context of freeway corridors, localized constrictions of traffic flow or restricted capacity 
segments are typically called bottlenecks (FHWA, 2020). Initially, a bottleneck can be associated 
with eliminating one lane or reducing other dimensions of the cross-section elements of a 
particular freeway segment. However, many other factors affect capacity. Therefore, it is a 
dynamically changing feature that needs to be estimated. 

Bottlenecks represent 40 percent of the causes of congestion, as shown in Figure 7. They can be 
categorized as recurrent, which are predictable at a particular time of day, and non-recurrent, 
which are random and can happen at any time. Overdemand of volume is the signature trigger of 
recurrent bottlenecks. The loss of capacity triggers the non-recurrent bottlenecks that typically 
occur because of an incident or a short-term overdemand by a spot event. For dissipation of a 
bottleneck, when it is recurrent, the volume of the overdemand should return to a manageable 
level. In the case of non-recurrent bottlenecks, dissipation occurs when the event is over, or 
demand is lower than the bottleneck capacity.  
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Figure 7: Causes of Congestion  

Source: FHWA, 2009 

A basic model can be considered to represent bottleneck analysis as presented by the classic 
reference by May (1999). According to this model, and considering lane reduction, traffic 
congestion starts in a segment of reduced capacity. A queue is formed upstream, and queue 
length can be determined by subtracting the number of vehicles arriving at the bottleneck to the 
bottleneck capacity. The queue length at each time interval for the duration of the queue, and the 
total delay generated during the congestion period can also be calculated. Hoogendoorn and 
Knoop (2013) further developed this basic model and presented examples of all these 
calculations and the corresponding graphical analysis.  

The topic of traffic congestion in corridors has been studied for a long time. For example, 
Cassidy and Bertini (1999) discussed the issues related to traffic bottlenecks at freeways based 
on observations made in and near Toronto, Canada. Their observations confirm that the capacity 
of the bottleneck segment is lower during the congestion period than the flow measured before 
the formation of the queue. This reduction in the maximum flow rate is an interesting fact that 
also needs to be incorporated in the analysis of corridor congestion. 

Using drones can significantly improve corridor surveillance and reduce traffic congestion 
related to incidents. For this research project, drones will help identify bottlenecks related to 
incident situations that reduce capacity. The algorithms developed will estimate traffic demand, 
and with those figures, the characteristics of the traffic congestion can be calculated using the 
basic model presented before or with even more sophisticated analyses. All this information will 
be received at the corresponding corridor control center to manage each situation promptly.  

Freeway traffic management and operations are the implementations of policies, strategies, and 
technologies to improve freeway performance (FHWA, 2017). The overriding objectives of 
freeway management programs are to minimize congestion (and its side effects), improve safety, 
enhance overall mobility, and provide support to other agencies during emergencies. 
Technology—specifically Intelligent Transportation Systems (ITS)—is creating an environment 
in which management and operations can take a major leap forward. Recent advances in 
surveillance, communications, processing, and information dissemination technologies, with an 
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emphasis on "real-time" applications, have proven to be a significant enabler of freeway 
management and operations. ITS allows for the rapid identification of situations with a potential 
to cause congestion, unsafe conditions, reduced mobility, etc.; and then to implement the 
appropriate strategies and plans for mitigating these problems and their duration and impacts on 
travel. Freeway management applications have had a positive effect on freeway operations 
leading to benefits such as increased safety, improved traffic flow, and reductions in traffic 
delays (FHWA, 2017). 

The ITS aim is to achieve traffic efficiency by minimizing traffic problems (Choudhary, 2019). It 
enriches users with prior information about traffic, local convenience, real-time running 
information, seat availability, etc. which reduces travel time of commuters as well as enhances 
their safety and comfort (Choudhary, 2019). Millions of Americans experience ITS every day 
without even noticing (Chan-Edmiston et al., 2020). These technology tools made possible 
through ITS both increase efficiency for travelers across the nation and increase the value of 
existing transportation infrastructure. Today’s emerging ITS includes automated driving systems 
and data exchanges, supports cybersecurity, and uses spectrum and artificial intelligence to meet 
traveler’s needs. American travelers alone derive substantial economic and societal benefits from 
ITS, estimated at a value exceeding $2.3 billion annually (Chan-Edmiston et al., 2020). Some of 
the most prominent ITS technologies already deployed across the country include electronic toll 
collection, ramp meters, red-light cameras, traffic signal coordination, transit signal priority, and 
traveler information systems.  

Among these technologies, ITS deployment appears to have the most broad-based benefit for 
improved mobility (US DOT, n.d.). There are six primary deployments as part of the USDOT’s 
ITS Technology adoption—Electronic Toll Collection (ETC), Ramp Meter (RM), Red Light 
Camera (RLC), Traffic Signal Coordination (TSC), Transit Signal Priority (TSP), and Traveler 
Information Systems (TIS).  

ETC supports the collection of payment at toll plazas using automated systems that increase the 
operational efficiency and convenience of toll collection. Systems typically consist of vehicle-
mounted transponders identified by electronic readers located in dedicated or mixed-use lanes at 
toll plazas. ETC has the potential to significantly increase mobility on the US transportation 
system. High estimates for ETC’s nationwide mobility benefits were over $1 billion per year at 
2007 deployment levels (2009 $) (US DOT, n.d.). ETC can reduce delays through the toll area. 
Vehicular on-board electronic equipment interacts with fee collection infrastructure at the toll 
booths to automatically collect tolls, thereby reducing the time vehicles otherwise would have 
spent waiting in queue and at the toll booth itself (Roy et al., 2016). 
RMs are traffic signals on freeway ramps that alternate between red and green signals to control 
the flow of vehicles entering the freeway. Metering rates can be altered based on freeway traffic 
conditions. Most ramp meters allow only one vehicle through each green light, creating a 4–15 
second delay between cars entering the highway. This delay helps reduce disruptions to freeway 
traffic and reduces incidents that occur when vehicles merge onto the highway (WSDOT, 
2021). Without ramp meters, multiple cars try to merge simultaneously. Drivers on the freeway 
slow down to allow the cars to enter and these slower speeds quickly cause backups. If cars enter 
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the highway in controlled intervals, they are less likely to cause a disruption to the traffic on the 
freeway. A short wait on the ramp allows drivers to increase their average freeway speed 
and shorten overall freeway travel times. Ramp meters also reduce the number of collisions that 
often occur when multiple vehicles merge onto the highway at the same time (WSDOT, 2021).  

 
Figure 8: Ramp Metering in Top U.S. Metropolitan Areas 

Source: FHWA, 2014 

Without ramp meters in operation, multiple vehicles merge in tightly-packed platoons, causing 
drivers on the mainline to slow down and, sometimes, even stop to allow vehicles to enter. The 
cascading slower speeds, both on the mainline and the ramp, quickly lead to congestion and 
sometimes stop-and-go conditions. Ramp meters can break up the platoons by controlling the 
rate at which vehicles enter the mainline from the ramp (FHWA, 2014). This allows vehicles to 
merge smoothly onto the mainline and reduces the need for vehicles on the mainline to reduce 
speed. In addition to breaking up platoons, ramp meters help manage entrance demand at a level 
that is near the capacity of the freeway, which prevents traffic flow breakdowns. Ramp meters 
are shown to reduce peak-hour lane occupancies (FHWA, 2014). 
RLCs detect a motor vehicle that passes over sensors in the pavement after a traffic signal has 
turned red. The sensors connect to computers in high-speed cameras, which take two 
photographs of the violation. Typically, the first photo is taken of the front of the vehicle when it 
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enters the intersection, and the second is taken of the rear of the vehicle when the vehicle is in 
the intersection. Law enforcement officials review the photograph, and a citation is mailed to the 
registered owner of the vehicle. RLC benefits appear primarily to be in safety, with high 
estimates of over $1 billion (US DOT, n.d.). A series of IIHS studies in different communities 
found that red light violations are reduced significantly with cameras. Institute studies in Oxnard, 
California, and Fairfax, Virginia, reported reductions in red light violation rates of about 40 
percent after the introduction of red-light cameras (IIHS HLDI, 2021). Violations occurring at 
least a half-second after the light turned red were 39 percent less likely than would have been 
expected without cameras. Violations occurring at least one second after, were 48 percent less 
likely, and the odds of a violation occurring at least 1.5 seconds into the red phase fell to 86 
percent (IIHS HLDI, 2021). 

TSC provides the ability to synchronize multiple intersections to enhance the operation of one or 
more directional movements in a system. Some examples include arterial streets, downtown 
networks, and closely spaced intersections such as diamond interchanges (US DOT, n.d.).  

TSP gives special treatment to transit vehicles at signalized intersections. TSP systems use 
sensors to detect approaching transit vehicles and alter signal timings to improve transit 
performance. For example, some systems extend the duration of green signals for public 
transportation vehicles when necessary. Because transit vehicles can hold many people, giving 
priority to transit can potentially increase the person throughput of an intersection. TSP 
technologies had high annual mobility estimates of over $149.9 million (US DOT, n.d.). 

Effective TIS are multimodal and support many categories of drivers and travelers. Traveler 
information applications use a variety of technologies, including Internet websites, telephone 
hotlines, and television and radio, to allow users to make informed decisions regarding trip 
departures, routes, and mode of travel. TIS technologies have had high annual mobility estimates 
of over $543.1 million (US DOT, n.d.). 

A Traffic Management Center (TMC) is the vital unit of ITS. It is a technical system 
administered by the transportation authority (Choudhary, 2019). A TMC is the hub or nerve 
center of most freeway management systems (FHWA, 2020). It is where the data on the freeway 
system are collected and processed, fused with other operational and control data, synthesized to 
produce information, and distributed to stakeholders such as the media, other agencies, and the 
traveling public. TMC staff use the information to monitor the operation of the freeway and to 
initiate control strategies that affect changes in the operation of the freeway network. It is also 
where agencies can coordinate their responses to traffic situations and incidents. 

The role of a TMC often goes beyond the freeway network and the responsible agency, 
functioning as the key technical and institutional hub to bring together the various jurisdictions, 
modal interests, and service providers to focus on the common goal of optimizing the 
performance of the entire surface transportation system. It is essential that the TMC be planned 
for, designed, commissioned, and maintained to allow operators and other practitioners to control 
and manage the functional elements of the freeway network (FHWA, 2020). 
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Traffic Incident Management (TIM) consists of a planned and coordinated multi-disciplinary 
process to detect, respond to, and clear traffic incidents and restore traffic flow as safely and 
quickly as possible. Applied effectively, TIM reduces the duration and impact of traffic incidents 
and improves the safety of motorists, crash victims, and emergency responders (FHWA, 2021). 
There are numerous benefits to integrating TIM into the transportation planning process at a state 
or regional level using an objectives-driven, performance-based approach. Transportation 
planners and traffic incident management professionals are two groups of professionals who 
traditionally have had little interaction, but there are real and sustainable benefits for incident 
responders, planners, and the traveling public to be gained when the connection is made. Those 
benefits start with safer, more efficient transportation system performance for the traveling 
public. With greater regional support, incidents can be cleared safely in less time, minimizing 
congestion and the impacts of traffic incidents on overall mobility and safety (FHWA, 2021). 

From a transportation perspective, incidents tend to be classified based upon their impact on 
traffic operations (FHWA, 2017). Transportation agencies have their ranking systems for 
classifying incidents. Most of them have these characteristics for the classification—traffic flow, 
impact/delay, incident characteristics, and who responds. TIM has defined the traffic incident 
elements, as shown in Figure 9 and explained in Table 1.  

Around 70 percent of states and territories in the US have TIM programs implemented. In Puerto 
Rico, the DTPW has the San Juan Metropolitan Area TIM Program, which consists of a planned 
and coordinated multi-disciplinary effort to detect, respond to, and clear traffic incidents so that 
traffic flow can be restored as safely and as quickly as possible. Effective TIM reduces the 
duration and impact of traffic incidents and improves the safety of motorists, crash victims, and 
emergency responders. Major natural events highlight the importance of TIM as more than a tool 
for increasing mobility and reducing congestion. Public safety agencies are also acknowledging 
their roles in responder and motorist safety and secondary incident prevention.  

 
Figure 9: Timeline of Traffic Incident Elements  

Source: FHWA, 2015 
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Table 1: Key Traffic Incident Times 

 
Source: FHWA, 2015 

In surface transportation, FHWA has developed a vehicle classification scheme for the purpose 
of counting and classifying all vehicular traffic in accordance with the classification scheme in 
Figure 10. This scheme separates motorcycles, passenger cars, pick-ups, buses, and different 
types of trucks, from single-unit trucks to multiple axle combinations. It is important that any 
vehicle detection algorithm developed for incident detection can distinguish between traditional 
passenger cars and multi-trailer/axle truck configurations. 

 
 

Figure 10: FHWA Vehicle Classification 
Source: FWHA and Refai et al., 2014 
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An example of the current methods to collect these types of data is using road tubes for traffic 
counts. These devices are commercially available and include road tubes that are 10 ft parallel to 
each other, as shown in Figure 11, with the appropriate device to register the pressure imparted 
by vehicles as they cross. An algorithm then converts the data to a classification of the vehicle as 
defined by FHWA. These traditional devices have a margin of error that may be affected by 
irregularities of the pavement surface, the differential in tire pressure of vehicles, as well as 
speed. These devices are used to determine the Average Annual Daily Traffic (AADT) and other 
requirements established in the Highway Performance Monitoring Systems (HPMS).  

 
 

Figure 11: Road Tubes 
Source: Diamond Traffic and Metro Count 

The use of drones and the proposed design experiment framework will assist researchers to 
determine the percent of error of those commercial setups used in the lanes of multi-lane 
highways for permanent count stations. The effectiveness of a drone’s capacity to count vehicles 
and classify them will be compared to traditional methods. They will be compared when 
measuring the traffic flow at particular periods during the day, peak and off-peak, and the 
efficiency of transmitting the information to the TMC for the appropriate action of traffic detour 
prior to an incident and other information that can be sent to other organizations such as police 
enforcement, emergency responders and others. 

Mallela et al. (2021) stated that the aerial accessibility provided by UAVs and the availability of 
scalable and efficient computer vision algorithms create an excellent potential for using UASs 
for traffic analysis applications. UAS equipped with a high-resolution camera flying at a high 
altitude provides an aerial view of live traffic data. Recent advancements in computer vision can 
detect and analyze the speed, count, flow, and sometimes make decisions independently. 
Although there are limitations (e.g., altitude ceiling and short battery life), the prospect of UAS 
application in traffic monitoring is tremendous. Using UASs for traffic analysis could see 
savings of $75 million nationally (Carroll & Rathbone, 2002). 

2.2 UNMANNED AIRCRAFT SYSTEMS 

The second focus of the literature review concentrated on the different aspects of small UAVs 
(sUAV), specifically, sUAV specifications, application to surface transportation projects in 
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urban and suburban areas, federal regulations, and protocols required as per 14 CFR Part 107. In 
this federal regulation, certifications that are required to fly an sUAV, the available waivers for 
special applications, limitations, and restrictions are explained.  

2.2.1 14 CFR PART 107 

Just as there are rules of the road when driving a car, there are rules of the sky when operating a 
drone. 14 CFR Part 107 provides the set of rules and regulations applicable to drone pilots to 
operate commercial drones in the national airspace (FAA, 2020). Prior to flying a commercial 
drone, the pilot must obtain an FAA license, and the person obtaining the license must comply 
with all the requirements established by the FAA. To prepare for the licensing exam, the pilot 
must have knowledge of regulations, national airspace systems, weather, operations, and loading 
and performance. The FAA's online registration system for drones went into effect on December 
21, 2015, and required all UAS weighing more than 0.55 lbs (250 grams) to be registered. 

The FAA has a series of operating restrictions for drone pilots (FAA, 2020), as summarized 
below:  

x Always avoid manned aircraft. 
x Never operate in a careless or reckless manner. 
x Keep your drone within sight. If you use First Person View or similar technology, you 

must have a visual observer to always keep your drone within unaided sight (for example, 
no binoculars). 

x You cannot be a pilot or visual observer for more than one drone operation at a time. 
x Do not fly a drone over people unless they are directly participating in the operation. 
x Do not operate your drone from a moving vehicle or aircraft unless you are flying your 

drone over a sparsely populated area, and it does not involve the transportation of 
property for compensation or hire.  

14 CFR Part 107 provides all the requirements that pilots must follow, some of which are as 
follows: Pilots can fly during daylight (30 minutes before official sunrise to 30 minutes after 
official sunset, local time) or in twilight if the drone has anti-collision lighting. Minimum 
weather visibility is 3 miles from the control station. The maximum allowable altitude is 400 ft 
above the ground level (AGL), higher if the drone remains within 400 ft of a structure. 
Maximum speed is 100 mph (87 knots). 

The remote pilot must be aware of all the airspace restrictions and, if needed, the waivers 
required for every flight. Restrictions that commonly affect UAS flights include stadiums and 
sporting events, airports, security-sensitive airspace, special use airspace, and the Washington, 
DC Special Flight Rules Area and Flight Restricted Zone. Pilots may fly specific drone 
operations not allowed under Part 107 by requesting an operational waiver, which allow them to 
deviate from certain rules under 14 CFR Part 107 by demonstrating they can still fly safely using 
alternative methods (FAA, 2021). 
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14 CFR Part 107 was amended on April 21, 2021, to allow a drone operator to fly at night, over 
people, and over moving vehicles without a waiver. For this to apply, the operator must meet the 
requirements defined in the rule. However, airspace authorizations are still required in controlled 
airspace. Figure 12 shows when a drone operator must request a waiver for several flying 
conditions.  

 
Figure 12: Available Waivers for Flight Operations Contrary to 14 CFR Part 107  

Source: FAA (www.faa.gov) 

2.2.2 UAS APPLICATIONS IN SURFACE TRANSPORTATION  

Applications of sUAS in surface transportation were reviewed for potential applicability to the 
research project. Examples of such applications include road and bridge inspection, traffic 
surveillance, incident management, incident investigation, and emergency management. 
According to a survey by the American Association of State Highway and Transportation 
Officials (AASHTO), 33 state departments of transportation (DOTs) have carried out or are 
exploring applications of UASs in various aspects of transportation, including inspecting bridges, 
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collecting traffic data, and assisting in motor vehicle crash clear-up (Daiheng Ni, 2017). 
Regulation and protocols available from other state DOTs were reviewed as part of this 
comprehensive literature review. Such regulations were used as a reference for the development 
of the NICR freeway multi-lane corridor surveillance protocol.  

Different drone operation manuals were analyzed as part of this task. It was found that each 
drone acts differently; therefore, a remote pilot must evaluate different drone manuals to gain 
insight into their processes. Common activities and tasks related to drone operation include 
different flight modes, Return-to-Home, warning lights, battery safety, storage, and maintenance. 
Several quotes from local and national sUAV suppliers were evaluated in terms of the 
specifications and capabilities required for our research project. For example, camera resolution, 
battery life, stability in adverse weather conditions, software for thermal detection, and other 
attributes that will be required to transfer data from the urban corridor freeway evaluated in real-
time.  

Focal length and the field of view were reviewed as part of understanding the influence of the 
drone height and the camera in the video resolution. Field of view defines the maximum area of a 
sample that a camera can cover, determined by the focal length of the lens and sensor size. The 
focal length of a lens converges light so that the image of an object is focused on the sensor. This 
determines the angular field of view, a parameter of the overall field of view (Field of View and 
Angular Field of View, n.d.). 

UAS have historically been used for military, aerial photography, search and rescue efforts, 
mapping, and law enforcement applications (O’Neil-Dunne & Estabrook, 2019). Technological 
advancements over the past decade have brought many improvements and features to UAS to the 
point at which consumer-grade UASs can be obtained for a relatively low price. Some of these 
advances include autonomous flight, safety features such as a return-to-home feature, and 
obstacle avoidance. UASs are evolving quickly given how much technology has already changed 
in the past several years. 

At the Innovative Applications in Transportation Infrastructure using Unmanned Aerial Systems 
Congress on May 12 and 13, 2021, several professionals from the public and private sector 
presented how they are integrating UAVs in their daily routines. The use of UAVs was a key 
component in the assessment of damages due to Hurricane Maria in 2017, from getting aerial 
images to helping in calculating the debris generated.  

The Municipality of Bayamon in Puerto Rico used sUAS as a measuring platform for the reports 
of the volume of debris that was required by the Federal Emergency Management Agency 
(FEMA) after the hurricane (Flores Rivera, 2021). Klein Engineering worked on landslide 
projects for the PRHTA and FHWA. The projects consisted of island-wide assessments and 
repair recommendations. The UAS was used for the measurement and calculation of areas and 
volumes to assess the extent of the damages (Klein, 2021). The Puerto Rico Police Bureau is 
integrating UAVs into their ranks to help them in crash investigations and reconstruction, traffic 
control, traffic incident monitoring, hazardous materials spill, inspection of bridges and 
structures, and landslip inspections (Hidalgo, 2021). PRHTA’s Soils Engineering Office is 
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implementing the UAVs for the Geotechnical Asset Management Program, emergencies of 
weather, natural events, design and construction, route planning, and rating asset conditions 
(Barbosa-Vélez, 2021).  

In Missouri, studies and inspections using UAVs have been completed. Trial tests indicate that 
UASs can significantly reduce the total man-hours on bridge inspections (WTKN, 2021). Larger 
bridge inspections may often require a team of up to seven people, whereas a team of only three 
is required when using a UAS. In addition to reduced personnel and man-hours, the use of UASs 
to inspect bridges will not require any maintenance of traffic activities, nor an inspection vehicle 
(boom truck), nor additional vehicles to carry traffic cones; therefore, significant cost savings 
due to less gasoline usage are expected (WTKN, 2021). More importantly, the use of UASs to 
inspect bridges will result in fewer traffic interruptions due to lane closures, which is vital to the 
general motoring public’s quality of life and reduces the safety risks to inspection personnel. 

The NIMBUS Laboratory at the University of Nebraska has been developing drones that have 
the unique ability to dig holes in the ground and then fill those holes with sensors. The drone 
needs to be able to carry a portable digging system a useful distance, locate a diggable spot, land, 
verify that the spot it thought was diggable is, in fact, diggable, dig a hole and install the sensor, 
and then fly off again (WTKN, 2021).  

In Wyoming, a survey was performed to identify the economic impact of sUAS. Camp Guernsey 
Integrated Training Area Management employs UAS as a tool to quantify and identify damage 
from military maneuvers in training areas that can be as large as 7,000 acres. Operational, 
maintenance, and fuel costs are reduced significantly with UAS (WYDOT, 2020). The uses are 
distributed into aerial photography/videography, agricultural/forestry related, natural resources 
inspection, engineering/surveying, local government, military, UAV manufacturing, among 
others. It was also found that a total of 87 different organizations or entities were identified as 
being active drone operators. These entities have 159 employees devoting at least part of their 
time to UAS/UAV activities (WYDOT, 2020). 

In Jacksonville, Florida, UAVs are used to accurately repeat flights over a specific area, which 
allows users to monitor change over time. It can be used to monitor environmental conditions 
such as flooding, beach erosion/restoration, changes in vegetation or wildlife utilization, the 
success or failure of mitigation projects, and pre-storm and post-storm conditions. It could also 
be used to track land-use changes or monitor construction progress (USACE, n.d.). 

Pertinent findings of the use of drones in India, the United Kingdom, Japan, and Switzerland are 
briefly described, but recognizing that their flying protocols are not under the jurisdiction of 14 
CFR Part 107. When drones are used along with traditional ground-based sensors, more absolute 
data can be collected for traffic monitoring and management (Archana, 2018). UAV was 
essential for the accurate estimation of longitudinal and lateral gaps between vehicles (Afzal 
Ahmed, 2021). UAVs are preferred over other technologies due to their mobility and the 
significantly lower cost of operation compared with manned systems (Raj, 2017). UAVs can be 
sent quickly to find accident victims without risking human lives. Furthermore, acquiring data 
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from an aerial view is exceptionally useful as it solves essential issues when evidence is spread 
out, and it is difficult to get a good point of view from ground level (Raj, 2017).  

As a pilot project, the Government of Maharashtra in India has deployed two drones to monitor 
weekend rush hour traffic and crashes on the 95-km stretch between the Lonavala Exit and 
Khalapur Toll Plaza and on the six-lane Mumbai-Pune Expressway (PwC, 2018). Information 
collected with the help of drones eases identification of defects, patches on roads, the traffic 
situation at different times of the day, obstructions, etc. (PwC, 2018). 

In the United Kingdom, Khan (2017) organized UAV-based traffic studies and prepared a 
framework that can be utilized for general drone-based studies. The framework includes seven 
components—scope definition, flight planning, flight implementation, data acquisition, data 
processing and analysis, data interpretation, and optimized traffic application. In scope 
definition, the main objectives of the study were defined, and a specific focus was established 
corresponding to the expected results. The Flight Planning Stage involved preparation for the 
implementation of the actual UAV flight for the collection of the required data. During the flight 
implementation stage, the UAV flew over an area of interest as per the planned flight path/route. 
This flight was conducted based on the parameters established during the flight planning stage. 
The acquisition of data from the UAV was also a critical step of the proposed framework and 
was largely dependent on the scope of the study. Data to be acquired from the UAV included 
video footage of the region of interest along with any other data from sensors (infrared, thermal, 
ultrasonic, etc.) mounted on the UAV. Data acquisition can be real-time or offline depending 
upon the requirements of the project. Analysis of the UAV-based traffic footage involved some 
pre-processing and stabilization procedures, which were necessary to make the video ready for 
the actual analysis steps. Interpretation of the processed video data was the next step in the 
framework and was done with the help of different types of graphs and charts that are generated 
as an output of the data analysis procedures. The proposed steps in this framework were directly 
dependent on the scope of the study. The optimized conclusion of the traffic study in accordance 
with the scope was the final step in the proposed UAV-based traffic analysis framework. The 
study-specific traffic parameters determined during the analysis and interpretation steps were 
employed to improve the existing traffic models which ultimately help in solving the real-world 
traffic situations. 

Komatsu, a Japanese construction company, has begun creating Smart Construction, a team of 
robotic vehicles that scoops rock and pushes dirt without the need of a human behind the wheel. 
They are guided in their work by a fleet of drones, which map the area in three dimensions and 
update the data in real-time to track how the massive volumes of soil and cement are moving 
around the site (Popper, 2015). Before switching to drones, Komatsu had been experimenting 
with autonomous dump trucks, bulldozers, and excavators, but they lacked the ability to see and 
understand the environment around them with enough precision to be useful on their own. 
Komatsu used teams of human surveyors to create detailed maps of the job site, a process that 
left a lot of room for improvement. With Skycatch drones, Komatsu says it has dramatically 
reduced that margin of error while dramatically cutting the time it takes to complete a sitemap. 
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In Switzerland, architect Ammar Mirjan has been conducting experiments in a laboratory to 
prove that drones will be able to build structures soon (Hobson, 2015). Although drones are 
unlikely to replace traditional techniques in most cases, their unique capabilities will lead to 
them being used for specific applications in construction. Using drones to build tensile structures 
follows on from an earlier project by Gramazio Kohler Architects and Raffaello D’Andrea, in 
which UAVs were used to build a tower out of 1,500 polystyrene bricks at the FRAC Centre in 
Orléans, France.  

2.2.3 UAS CHALLENGES  

UASs have many benefits related to transportation activities, but they also has limitations and 
challenges that need to be considered (O’Neil-Dunne & Estabrook, 2019) . The primary 
limitations of UAS are weather and battery life; typical UAS platforms and sensors cannot be 
flown under rainy conditions since the platform and sensors are not water-resistant. UASs also 
cannot be flown in high wind or gusty conditions; wind speed maximums are specific to UAS 
platforms, as some are better in wind than others. Battery life is the second major limiting factor 
in UAS, as batteries limit flight times to typically less than an hour, limiting the amount of data 
that can be captured in a single flight (O’Neil-Dunne & Estabrook, 2019). 

Barmpounakis et al. (2017) compared the challenges of using static cameras, manned aerial 
vehicles (MAV), and UAV for monitoring. Collecting visual information for large networks can 
be a challenging procedure. Installing stationary cameras to monitor the extent of a transportation 
facility has been a successful practice for years. Nevertheless, several practical issues may 
emerge; for example, there are cases where the area to be monitored is large and cannot be 
covered from static cameras. Moreover, installing stationary cameras and supplementary 
infrastructure can sometimes be too costly, especially when an area does not need to be 
monitored anymore. Even if costs could be reduced, the problem of acquiring imagery and 
gathering data under the emergence of unexpected events is still not addressed. An extreme event 
may occur at any place and at any time. The response to such events should be made promptly to 
reduce their effects on the surface transportation system. From an emergency response 
perspective, it is evident that a set of static cameras fails to provide a clear picture of the 
unexpected extreme event, as the setting is specific, usually with limited ability to cover a 
surface transportation system (Barmpounakis et al., 2017). Table 2 compares the attributes of 
static cameras, MAV, and UAV for traffic monitoring. 
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Table 2: Comparison of Static Cameras, MAVs, and UAVs 

 
Source: Barmpounakis et al., 2017 

 

2.3 COMPARISON OF RGB AND THERMAL CAMERA IMAGES 

Sensors are an important part of any data collection apparatus. UAVs already use a suite of 
sensors for flight control and navigation and are often equipped with Global Positioning System 
(GPS), Inertial Navigation Sensors (INS), Micro-Electro-Mechanical Systems (MEMS) 
gyroscopes and accelerometers, Altitude Sensors (AS), and one or more sensors for their primary 
task of video recording or other type of data collection (Yao, Qin & Chen, 2019). UAVs can 
acquire very detailed information of observed objects by using a wide range of cameras such as 
Red Green Blue (RGB) sensor cameras, infrared, or thermal cameras that can be useful for 
obtaining aerial images of vehicles and tracking them (Jin et al., 2016). 

The most widely used sensors for data collection with UAV are RGB cameras (Chun et al., 
2019). These cameras provide multiple features such as high-resolution images and video 
recording. Lightweight RGB cameras provide the flexibility of using them with UAVS where 
weight is an issue. RGB cameras and thermal cameras have been used in surveillance, 
agriculture, inspection, filmmaking, and many other industries (Samaras et al., 2019). For use in 
traffic monitoring systems, the focus of this paper, RGB cameras are useful as flight aids and as 
data collectors to detect and process scenes involving vehicles (Nagai et al., 2012). RGB cameras 
also have limitations; the quality of the RGB visual data is highly dependent on the light present 
at the scene—the more intense the surrounding light, the better the quality of the image. 

Another image sensor is the infrared (thermal) camera, which detects the infrared radiation 
emitted by objects in its field of view. The energy of the radiation mainly depends on the object 
temperature. This can be useful when flying UAVs in different weather and light conditions. 
Compared to RGB cameras, thermal cameras have more flexibility when capturing videos with 
low levels of lighting. Thermal cameras provide enough information for object detection even 
though they typically provide lower resolution images with fewer details; this can be useful when 
privacy is important, as thermal images do not reveal vehicle license plates or the face of a 
person (Ma et al., 2016). Using thermal cameras also assist in reducing the pre-processing time 
of the frame before any real-time object detection and tracking algorithms, as the step of blurring 
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part of the frames to obscure private information can be eliminated. Thermal cameras, therefore, 
have great potential for traffic monitoring purposes with the correctly calibrated algorithms in 
place. 

2.4 VEHICLE DETECTION ALGORITHMS  

Motor or electric vehicles on the freeway or in a high-speed multi-lane facility first need to be 
detected and classified to accurately extract traffic-related information. Then, based on the 
detected results, traffic flow parameters can be estimated. Vehicle detection is often regarded as 
an application of object detection, which is a computer technology related to computer vision 
and image processing that has been studied abundantly. Object detection involves two main 
tasks—localization and classification (Vaddi, 2019). Localization is locating the object in the 
form of bounding box coordinates, and classification is predicting the object class. If all vehicles 
are deemed a single class, the object detection needs to deal only with the task of localization. 
This problem can be treated as a moving object detection problem, assuming cars are moving on 
the ground. The methods applied in object detection and moving object detection are discussed 
below. 

Methods for object detection can be categorized into neural network-based or non-neural 
network approaches. For non-neural network approaches, features such as histogram of oriented 
gradients (HOG), Haar, and scale-invariant feature transform (SIFT) are first computed and then 
fed into a classification model such as a support vector machine (SVM) to create classifiers 
(Lienhart, Rainer & Maydt, 2002; Dalal & Triggs, 2005; Lowe, 1999). After the rise of deep 
learning, neural network-based approaches were developed to provide a higher detection 
accuracy based on the convolutional neural network (CNN), among which there are two major 
categories—two-stage or region-based detector and single-stage detector. The region-based 
convolutional neural networks (R-CNNs) are models that involve a region proposal stage to 
extract a region of interest (ROI). R-CNN applies selective search algorithms to extract 2,000 
region proposals, or ROIs, from the image. Each region proposal is then warped and fed into a 
CNN before the classification module and bounding box regression are applied (Girshick et al., 
2014). The major problems of R-CNN are that inference time is very slow and the training 
process is very complex, as it requires training of three separate modules. To improve the speed 
of R-CNN, the same author built a faster detector, named Fast R-CNN, by passing the input 
image directly to the CNN to extract features before region proposals in such a way that only one 
CNN needs to run, as opposed to running 2,000 CNNs over 2,000 proposals (Girshik, 2015). 
Faster R-CNN further improved speed by replacing the selective search algorithm with a small 
convolutional network—a region proposal network—and achieved an end-to-end deep learning 
network (Ren et al., 2015). Faster R-CNN is hundreds of times faster than Fast R-CNN, with a 
frame rate of 5 FPS on a GPU, but it can perform real-time detection tasks.  

Single stage architectures have been created in the last few years to address the inference time 
limitation of the R-CNN family. The two state-of-the-art single-stage detectors are single-shot 
detector (SSD) and You Only Look Once (YOLO). Different from region-based detectors that 
first generate region proposals and then feed them to classification/regression heads, single-stage 
detectors use a single convolutional network to make predictions of the bounding boxes and the 
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class probability in one shot. YOLO has evolved to version 4 (YOLOv4) with a real-time speed 
of over 65 FPS and 43.5 percent mean average precision (mAP) for the MS COCO dataset. 
SSD321 can achieve 28.0 mAP and over 16 FPS. Both YOLOv4 and SSD can outperform Faster 
R-CNN in mAP (Liu et al., 2016; Bochkovsky, Wang & Liao, 2020; Redmon & Farhadi, 2018). 

Some classic approaches to detect moving objects include consecutive frame difference, optical 
flow, and background subtraction (Chapel & Bowmans, 2020; Kulchandani & Dangarwala, 
2015). Consecutive frame difference methods suffer robustness issues, and optical flow methods 
usually require many calculations, making real-time detection challenging. Background 
subtraction methods achieve a good balance between robustness and real-time detection, making 
them the most popular method in the literature. Background subtraction methods extract the 
moving foreground from the background and output a binary mask that separates the foreground 
and background pixels. To extract the foreground, background models are first created. The main 
difference between different types of background subtraction models is how the background 
model is built. Researchers have proposed approaches based on statistical models, machine 
learning models, and signal processing models. Statistical models such as single Gaussian, 
Mixture of Gaussians (MOG), and Kernel Density Estimation have been widely used in the 
literature (Stauffer& Grimson, 1999; Godbehere, Matsukawa & Goldverg, 2012; Bouwmans et 
al., 2018). Representation learning (e.g., GRASTA, incPCP) and neural networks (e.g., CNNs) 
have also been applied to background modeling He, Balzano & Szlam, 2012; Rodriguez & 
Wohlberg, 2016; Wang, Luo & Jodoin, 2017). Based on signal processing, researchers used 
signal estimation models, transform domain functions, and sparse signal recovery models to 
model the background Chang, Gandhi & Trivedi, 2004; Cevher et al., 2008; Kuzin, Isupova & 
Mihaylova, 2015). 

2.5 SPECIFICATIONS OF POTENTIAL SUAS 

The USF and UPRM teams researched available drones with different capabilities and 
specifications. The specifications and features of the DJI Mavic 2 Enterprise Advanced and 
Autel Evo II Pro 6K (Figure 13) are shown in Table 3 and Table 4, respectively. The Mavic 2 
has dual sensors, a 640 x 512 px high-resolution thermal sensor, and a 48MP visual camera, that 
can work separately or at the same time. It has a maximum flight time of 31 minutes and a speed 
of 45 mph. It offers a stable connection between the remote controller and the drone at a 
maximum distance of 6.2 miles. It is capable of centimeter-level positioning accuracy with the 
Real-Time Kinematic (RTK) module (DJI, 2021). Also, the lightweight and portable Mavic 2 
can take off in less than a minute. Additional features include discreet mode, self-heating 
batteries, password protection, and a working temperature from -10°C to 40°C (DJI, 2021). 

The Autel Evo II Pro 6K has a maximum flight time of 40 minutes. The range of the 
transmission between the controller and the drone is about 5.6 miles. Additionally, its bright 
color makes it easier to maintain visual contact. Autel Robotics puts a color display into the 
controller itself so that the user can fly, frame photos, and record video without an extra device 
(Fisher, 2021). The EVO II has a maximum speed of 22mph and offers all-around obstacle 
detection. It is very useful for working lower to the ground, where trees or other obstructions 
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may be an issue. When the user is flying higher, above the trees, switching to the Ludicrous 
mode gives footage more sense of motion (Fisher, 2021). 

  
 

 
Figure 13: Examples of Researched Drones:  

DJI Mavic 2 Enterprise Advanced (top), Autel Evo II Pro 6K (bottom)  
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Table 3: DJI Mavic 2 Enterprise Advanced Features 

 
Source: Adopted from DJI, 2021 
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Table 4: Autel Evo II Pro 6K Features  

 
Source: Adopted from (Autel, 2020) 
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The USF team further explored two versions of the Autel Evo II series—the EVO II with an 8K 
single camera and the Evo II Dual 640T with an 8K RGB camera and a 640x512 pixel thermal 
camera. Specifications for the Autel Evo II are shown in Table 5, and thermal camera 
specifications for the Dual 640T are shown in Table 6. All other specifications for the dual drone 
are the same as in the Evo II model. The drones are shown in Figure 14. 

Table 5: Autel Evo II Specifications 
Camera 

Attribute Specifications 
Image Sensor 1/2" CMOS 
Pixels 48MP 
Perspective 79° 

Lens 

Equivalent focal length: 25.6 mm 
Aperture: f/1.8 

Focus Distance: 0.5m to any distance (with autofocus 
mode) 

ISO Range Video: 100-6400 (auto) 
Photo: 100-3200 (auto) 

Zoom 1-8x (Max 4x lossless) 

Still Photography Modes 

Single Shot 
Burst shooing: 3/5 frames 
Automatic Exposure Bracketing (AEB)㸸 
3/5 bracketed frames at 0.7 EV Bias 
Timelapse㸸 
JPG: 2s/5s/7s/10s/20s/30s/60s 
DNG: 5s/7s/10s/20s/30s/60s 
HyperLight: support (under 4K JPEG format㸧 
Long Exposure: Max 8s 
HDR imaging: (under 4K JPEG) 

Still Photography Resolution 

8000*6000 (4:3) 
7680*4320 (16:9) 
4000*3000 (4:3) 
3840*2160 (16:9) 

Video Format MP4 / MOV (MPEG-4 AVC/H.264, HEVC/H.265) 

Video Resolution 

8K 7680*4320 p25/p24 
6K 5760*3240 p30/p25/p24 
4K 3840*2160 p60/p50/p48/p30/p25/p24 
2.7K 2720*1528 p120/p60/p50/p48/p30/p25/p24 
FHD 1920*1080 p120/p60/p50/p48/p30/p25/p24 

Max Bitrate 120Mbps 
Aircraft 
Takeoff Weight 2.5 lbs (1150 g) 
Max Takeoff Weight 4.4 lbs (1999 g) 
Diagonal Wheelbase 15.6 inches (397 mm) 
Aircraft Battery 7100 mAh 
Max Flight Time (standard) 40 min 
Max Hovering Time (standard) 35 min 
Max Level Flight Speed (Standard) 45 mph (20 m/s) (Ludicrous) 
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Max Ascent Speed 18 mph (8 m/s (Ludicrous) 
Max Descent Speed 9 mph (4 m/s) (Ludicrous) 
Max Service Ceiling Altitude 4.3 miles (7000 m) MSL 
Max Wind Resistance Force 8 wind 
Operating Environment Temp 14-104°F (-10-40°C) 
Working Frequency 2.4~2.4835GHz 

Transmission Power 
2.4~2.4835GHz 
FCC/ISED㸸���G%P 
SRRC/CE/MIC/RCM㸸���G%P 

Hover Precision 

Vertical: 
± 0.1m (with visual positioning in normal operation) 
± 0.5m (with GPS in normal operation) 
Horizontal: 
± 0.3m (with visual positioning in normal operation) 
± 1.5m (with GPS in normal operation) 

Sensing System 
Sensing System Type Omnidirectional Binocular Sensing System 

Forward 

Accurate Measuring Range: 0.5 - 20m 
Detection Range: 0.5 - 40m 
Effective Sensing Speed: < 15 m/s 
FOV: Horizontal: 60°, Vertical: 80° 

Backward 

Accurate Measuring Range: 0.5 - 16m 
Detection Range: 0.5 - 32m 
Effective Sensing Speed: < 12 m/s 
FOV: Horizontal: 60°, Vertical: 80° 

Upward 

Accurate Measuring Range: 0.5 - 12m 
Detection Range: 0.5 - 24m 
Effective Sensing Speed: < 6 m/s 
FOV: Horizontal: 65°, Vertical: 50° 

Downward 

Accurate Measuring Range: 0.5 - 11m 
Detection Range: 0.5 - 22m 
Effective Sensing Speed: < 6 m/s 
FOV: Horizontal: 100°, Vertical: 80° 

Sides 

Accurate Measuring Range: 0.5 - 12m 
Detection Range: 0.5 - 24m 
Effective Sensing Speed: < 10 m/s 
FOV: Horizontal: 65°, Vertical: 50° 

Service Environment 

Textured/patterned ground and adequate illumination 
(> 15 lux, normal indoor environment with fluorescent 
lamp on) 
Upward: diffuse reflecting surface with reflectivity 
above 20% (wall, tree, human, etc.) 
Downward: textured/patterned ground and adequate 
illumination (> 15 lux, normal indoor environment with 
fluorescent lamp on) 
diffuse reflecting surface with reflectivity above 20% 
(wall, tree, human, etc.) 
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Gimbal 

Operation Range 

Pitch: -135° to +45° 
Yaw: -100° to +100° 
Pitch: -90° to +30° 
Yaw: -90° to +90° 

Stability More stable with 3 axes 
Max Control Speed (Tilt) 300°/s 
Angular Vibration Range (°) ±0.005° 
Remote Controller and Transmission 
Max Signal Transmission Distance 5.5 miles (9km) FCC, 3.1 mi (5km) CE 
Working Frequency 2.4~2.4835GHz 

Transmission Power 
2.4~2.4835GHz 
FCC/ISED㸸���G%P 
SRRC/CE/MIC/RCM㸸���G%P 

Real-Time Transmission Quality 720p@30fps / 1080p@30fps 
Max Bitrate of Real-time Transmission 40Mbps 
Remote Controller Battery 5000mAh 
Operating Hours 3h 
Charging Time 2h Fast Charging 

Display 

3.26-inch OLED screen 
854 (W)*480 (H) pixels 
Preview video without need for connecting to mobile 
phone 

Power Consumption 1.7A@3.7V 
Battery 
Battery (mAh) 7100mAh 
Voltage (V) 11.55 
Transmission Power (2.4G) 13.2 
Battery Type LiPo 3S 
Battery Energy 82Wh 
Weight (g) 365 
Charging Temperature Range (°C) �a��ႏ 
Storage Temperature & Humidity -��a��ႏ㸪65±20%RH 
Recommended Storage Temperature ��a��ႏ 
Max Charging Power Consumption (W) 93W 
Charging Time 90min 

Source: Adopted from Autel, 2020 
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Table 6: Autel Evo II Dual 640T Thermal Camera Specifications 
Infrared camera sensor Uncooled VOx Microbolometer 
Sensor resolution 640x512 
Pixel pitch 12 µm 
Wavelength range 8㹼14 µm 
focal length 13mm 
FOV H33°V26° 
Zoom 1 ~ 8x 

Camera resolution Infrared mode: 640*512 
Picture in Picture: 1920*1080, 1280*720 

Photo shooting mode Single shooting, continuous shooting, time-lapse 
shooting 

Video Resolution 640*512 30fps 
Video format MOV / MP4 (support H.264/H.265) 
Temperature ��ႏ�RU�����RI�UHDGLQJ��ZKLFKHYHU�LV�JUHDWHU� 
Measurement accuracy @ambient temperature -��ႏa��ႏ 

Temperature range High gain mode: -20° to +150°C 
Low gain mode: 0° to +550°C 

Accurate temperature measurement distance 2-20 meters 
Source: Adopted from Autel, 2021 
 

  
Figure 14: Autel Evo II (left) and Autel Evo Dual 640T (right) 

 

2.6 EXPERIMENT DESIGN 

The last focus of the literature review was experiment design. In an experiment, one or more 
process variables or factors are deliberately changed to observe the effect and the changes it has 
on one or more response variables. The statistical design of experiments is an efficient procedure 
for planning experiments so that the data obtained can be analyzed to yield valid and objective 
conclusions.  

The split-plot design is a special case of a factorial treatment structure. This type of experimental 
design was selected for this project. It is used when some factors are harder (or more expensive) 
to vary than others. Much of the cost of running a split-plot experiment is tied to changes in the 
hard-to-change factors (Jones et al., 2009). A split-plot design consists of two experiments with 
different experimental units of different “sizes” (Lukas Meier, n.d.). One randomization is 
conducted to determine the assignment of block-level treatments to whole-plots (Jones et al., 
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2009). It is difficult to analyze due to the random errors of split block and whole blocks 
consisting of a lack of repeatability and too much variability.  

The design consists of five options—two-level full factorial designs, two-level fractional 
factorial designs, mixture and response surface designs, split-plot designs for robust product 
experiments, and optimal designs (Jones et al., 2009). The two-level factorial is a completely 
randomized design in the whole-plot factors that is conducted and, within each whole plot, a 
completely randomized design in the split-plot is also conducted (Jones et al., 2009). It replicates 
the split-plot within a given whole-plot giving an estimate of the split-plot error variance, 
whereas for the fractional factorial every whole-plot treatment combination is run in combination 
with every split-plot treatment combination (Cartesian-product designs) (Jones et al., 2009). 
However, this does not guarantee a maximum resolution in the design (Jones et al., 2009). 
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CHAPTER 3: RESEARCH METHODOLOGY 
The research methodology is described in the chapter and shown in Figure 15. The first step in 
the process consisted of a comprehensive literature review on transportation topics, UAS 
regulations and specifications, and experimental design concepts. In the second step, various 
drones were analyzed through their specifications and attributes to determine which UAS would 
be appropriate for the experiment. As part of the 14 CFR Part 107 requirements, members of the 
UPRM and USF teams took the Unmanned Aircraft General - Small (UAG) exam to become 
certified drone pilots. Members of both teams also took hands-on drone training to learn to safely 
fly UAS. The next step consisted of the development of the experiment design where the 
variables and different scenarios were established.  

 
 

Figure 15: UAS Research Methodology 
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3.1 SELECTION OF SUITABLE DRONES 

The purchasing budgets of UPRM and USF were similar, but timelines was different for the two 
teams. The final selection of the drones was done separately. Based on review of specifications 
of different drones, the UPRM team selected the DJI Mavic 2 Enterprise Advanced and the Autel 
Evo II Pro 6K. The USF team acquired two versions of the Autel Evo II series—the EVO II with 
an 8K single camera and the Evo II Dual 640T with an 8K RGB camera and a 640x512 pixel 
thermal camera. 

3.2 DRONE TRAINING 

Both USF and UPRM research teams performed hands-on training exercises to acquire 
experience with drones before collection of data for the project and obtaining pilot-in-command 
licenses for drone operations.  

In the first three hands-on training exercises at UPRM (Figure 16), the drone used was the DJI 
Phantom 3 Professional provided by the Puerto Rico Transportation Technology Transfer Center 
from the Department of Civil Engineering and Surveying at UPRM, which are partners in this 
research project in the technology transfer task. The first training was on March 12 in the Civil 
Engineering Building in UPRM at Mayaguez, where the pilots in command tested the controls of 
the drone. The drone reached no more than 200 ft in height near the parking of the building. The 
second training exercise was on March 27 in Guayama, where the team made a detailed tutorial 
on how to use the remote control while flying the drone. The drone reached a height of 400 ft in 
intervals of 100 ft. This tutorial was made as part of the outreach activities of the research 
project. The third one was on April 21, 2021, in Lajas. This exercise was an invitation from the 
Puerto Rico Highways and Transportation Authority (PRHTA) to image a road segment before 
and after implementing the micro-surfacing treatment in an existing flexible pavement as part of 
FHWA’s Every Day Counts (EDC) initiative.  

The training exercise with the research project selected drones took place on June 15. The DJI 
Mavic 2 Enterprise Advanced and the Autel Evo II Pro 6K were elevated at a maximum height 
of 100 ft as the airspace restrictions permitted. The DJI Mavic 2 recorded video with the normal 
and thermal camera at the same time (Figure 17). The video of the Evo II (Figure 18) shows the 
Civil Engineering Building and the green area behind it. Figure 19 shows the locations where the 
different drone training was executed in the island.  

Each of these training experiences contributed to the development and calibration of the before, 
during, and after procedures of flying a drone for integration into the protocol. During the hands-
on training experience in Lajas, the pilots encountered difficulties regarding wind, connectivity, 
and visibility. Wind prevented the UAVs from being stable, thus causing them to lose control 
and not able to record data accurately. Also, as the unmanned vehicle kept moving away from 
the pilot, the screen froze, and the pilot was not able to see what was being recorded. For this, the 
observer was attentive and kept watch of the UAV so there would be no problems. The third 
drone training encountered visibility problems during a segment where a curve impeded the view 
of the UAV to record traffic flow. The UAV was able to capture a small portion of the corridor. 
From the training with the Mavic 2 and Evo II, it was learned that the drones do not detect the 
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altitude restrictions associated with the airspace classification; they detect only the 400 ft height 
limit above ground level (AGL). 

  
(a) 

 

  
(b) 

 

 
(c) 

 
Figure 16: Drone Trainings 
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 Figure 17: DJI Mavic 2 Enterprise Advanced Video Images, UPRM Campus 

 

 

 
Figure 18: Autel Evo II Pro 6K Video Images, UPRM Campus 
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Figure 19: Locations of Drone Trainings 

The USF team conducted drone training first using a Potensic D58 FPV Drone with a 2K 
camera. This drone is an RC quadcopter for beginners, with GPS auto return. Research team 
members also registered for drone flight training with 3rd Rock Air, a local company offering 
hands-on training. A series of training materials was developed, and meetings were scheduled for 
team members to prepare for the Unmanned Aircraft General – Small (UAG) exam.  

 
Figure 20: Training Drone – Potensic D58 FPV  
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Figure 21: Content of Training Materials  
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CHAPTER 4: PROTOCOL 
4.1 INTRODUCTION 

This chapter focuses on the development of NICR sUAS protocol for freeway and multi-lane 
high-speed corridor surveillance and incident detection. The protocol considered the 
recommendations from UAS manufacturers, 14 CFR Part 107 regulations, best practices, and 
lessons learned from DOTs applied to different projects in transportation. It also considered 
experiences with weather conditions applicable in a tropical region and other locations in the US 
and Puerto Rico, and the collective experience of experts in surface transportation traffic 
operations and safety-related areas. Using this collective judgment and knowledge, prompt lists 
were divided into three major categories—Before, During, and After flight. The following 
sections describe the steps crew members took to ensure the safety of the drones and the research 
team.  

4.2 BEFORE FLIGHT 

Before every flight, the remote pilot in command must have a prompt list to ensure the safety of 
each member of the team, as shown in Table 7. Before the flight, the pilot must verify that all 
documentation regarding the 14 CFR Part 107 Remote Pilot Certificate is valid and that the 
drone has an up-to-date and visible FAA registration. The pilot also must verify airspace 
clearance to determine the need to obtain the necessary waivers during the operations in the area 
selected. Prior to the flight, the site area must be evaluated for possible hazards that can interfere 
with operations. Weather conditions must be monitored on the day before and the day of the 
flight; this item is key to knowing if the date of operations must be rescheduled.  

At least one member of the team must be in charge of having emergency contact information for 
all team members, emergency responders, and the drone manufacturer and just have a first aid kit 
available. The remote pilot must have a written flight plan that describes the purpose of the 
operation and airspace classification, location, list of crewmembers, and primary and alternative 
launch and land sites. The flight plan also determined how the experiment would be performed. 
It must be revised by the remote pilot in command, as that person who oversees flight operations. 
Appendix C provides an example of the Flight Plan template. The pilot must verify that the 
drone has all the necessary updates; if not, this must be done with sufficient time days before the 
flight. After all these items are verified, the pilot proceeds to inspect all parts of the drone to 
ensure that everything is ready to proceed with the flight. 
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Table 7: Prompt List for Before Flight 

 
4.3 DURING FLIGHT 

A visual observer must be attentive to the drone at all times for interferences. The pilot can 
change the flight plan if an encounter with challenges occurs, such as a change in weather 
conditions, visibility problems, technical difficulties, among others. The team must always 
maintain proper communication during the flight. As part of good crew resource management, a 
crew member must oversee preparing for weather conditions (e.g., on a hot day, have water 
available). The pilot must monitor the battery levels of the drones during the flight; high 
temperatures can reduce battery use time. The pilot and team must follow the procedure 
established for data collection. In case of an incident, the pilot can deviate from the procedure if 
needed.  

Table 8: Prompt List During Flight

 
 4.4 AFTER FLIGHT 

After the flight, the pilot must inspect the drone parts again to make sure everything is in order. 
Following the recommendations of the manufacturer, all parts must be stored in a safe place. In 
case of any incidents, a report must be completed with a detailed explanation of what occurred. 

 

B
EF
O
R
E 

ITEM ACTION 
Remote Pilot in 

Command Credentials 
& Information 

Valid Part 107 Remote Pilot Certificate. 
Drone flight operations records. 

Airspace Clearance Verify regulations and airspace restrictions that may apply to the area of study. Request a 
waiver if it applies to the Airspace Classification of the area. 

Evaluate Site Area Identify possible hazards in the site area that may affect the drone operations.  

Weather Conditions Keep track of the weather conditions. This should be done several days in advance and the on 
day of the flight.  

Emergency 
Contingency 

Information of emergencies contacts, agencies (e.g., police, fire department), drone 
manufacturers. First aid kit available always.  

Flight Plan Purpose, airspace classification, location, list of crewmembers, primary and alternative launch 
and land sites.  

Drone Inspection Verify updates needed that take time before the flight 
Verify drone manuals, inspect drone parts (e.g., batteries, propellers, remote control, camera).  

D
U
R
IN
G

 

ITEM ACTION 

Interference/Manual Operations Visual observers must be attentive and always keep watch.  

Challenges Encountered Visibility problems, technical difficulties, and weather conditions.  

Data Collection Follow the procedure established.  

Battery Level  Monitor battery levels.  

Crewmembers Prepare for weather conditions (e.g., in a hot day have water available).  
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The report must detail the persons involved and their observations of the incident. Appendix C 
provides an example a report. If the cost to replace or repair damages caused by the incident 
exceeds the limits established in 14 CFR Part 107, it must be reported to the FAA. After every 
drone flight operation, the remote pilot must write a report that details everything done during 
the flight.  

UAVs will be used to transmit data in real-time; however, data will also be recorded for later 
analysis. The collected data from the videos will then be used for different study purposes. There 
will be programs implemented so that the data can be manually counted. The type of algorithm 
or application used to process the raw data fully depends on the data collected.  

All algorithms for this research project are being implemented in Python. USF developed 
software to perform vehicle counts frame by frame so UPRM can use it for the same purposes. A 
tutorial was provided so students at UPRM could understand how the code works and apply it to 
the corridor selected in Puerto Rico. 

Table 9: Prompt List After Flight 

 
4.5 LESSONS LEARNED 

The research team identified the following limitations during the training exercises— 
connectivity problems at great distances of flight, capturing on video a long segment, and 
problems with sight distance on curved road segments. Depending on the capabilities of the 
drone, it can experience difficulties transmitting a clear image when being far away from the 
controller. To mitigate this, the crew must locate a strategic area where the drone is relatively 
close to the area of interest and themselves. When operating a drone in a long or curved segment, 
one should consider that the drone must be always visible by at least two members of the crew. 
Certain topography, such as mountainous terrain, can restrict the visibility of the pilot in 
command and the crew of the drone at long or curved distances. As a recommendation to treat 
this issue and as part of effective crew resource management, the pilot in command and visual 
observers can position themselves at certain distances between them to cover the whole segment. 
The use of walkie-talkies or other communication devices can be used for continuous 
communication between the crewmembers. For safety reasons, when operating alongside a 
freeway corridor, the crew should use a safety vest and helmets. 

 

A
FT
ER

 

ITEM ACTION 

Drone Inspection Inspect all parts  

Storage Considerations Storage properly following the guideline provided by the manufacturer.  

Incidents 
The remote PIC must redact a report containing details of the incident. If the cost to replace 
or repair the damages caused by the incident exceed the limits established in 14 CFT Part 

107, it must be reported to the FAA. 

Flight Report Detail all the flight. 

Data Analysis Store data in the corresponding place and analyze according to purpose of flight.  
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CHAPTER 5: EXPERIMENTS OF TRAFFIC DATA COLLECTION  
AND ANALYSIS 
Montgomery (2013) provides guidelines for designing an experiment. The steps suggested are 
the following:  

1. Recognition of and statement of the problem 
2. Choice of factors, levels, and ranges  
3. Selection of the response variable  
4. Choice of experimental design  
5. Performing the experiment  
6. Statistical analysis of the data  
7. Conclusions and recommendations 

This chapter describes the data collection and analysis experiments following Montgomery’s 
seven steps. As noted, in practice, Step 2, choice of factors/levels/ranges, and Step 3, selection of 
variables, are often done simultaneously or in reverse order. In this research project, these two 
steps were done simultaneously.  

5.1 RECOGNITION AND STATEMENT OF THE PROBLEM 

The reliability and validity of traffic measurement data become a cardinal aspect, especially 
when UAVs are used for obtaining such information. Current techniques for these count data, 
such as manual counting and counting masts, have certain disadvantages such as limited range of 
action, degradation of equipment, and high maintenance costs (Brahimi et al., 2020). Drones 
with different sensing technologies present an opportunity to overcome these limitations by 
collecting and processing traffic data in real-time. Nonetheless, the quality of data gathered with 
drones and the accuracy and precision of vehicle detection algorithms must be assessed. Thus, 
the research team carefully designed the experiments, collected the data, and evaluated the 
performance of vehicle detection algorithms.  

5.2 CHOICE OF FACTORS, LEVELS, AND RANGES AND  
SELECTION OF RESPONSE VARIABLES 

To inform operational concepts for the use of drones for traffic monitoring, this project explored 
the effectiveness of drone congestion detection as a function of the geometry of the drone and 
sensor relative to the highway. Flying at higher altitudes and viewing the roadway at oblique 
angles can make more of the roadway visible to the sensor and, thus, might increase the rate at 
which the drone can cover a road. On the other hand, the accuracy of the detection algorithms 
may be negatively affected. There also are many drone operating restrictions, some imposed by 
the FAA, such as altitude limits and operations over people, and others relating to obstacle 
avoidance, such as radio towers, power lines, overpasses, etc., that can restrict the drone’s 
viewing perspective.  

Figure 20 illustrates the geometry of a drone and sensor relative to a monitored highway and 
defines some of the experimental parameters. In this project, height above ground DH, 
depression of the sensor relative to the horizontal plane D, and azimuth of the sensor relative to 
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the roadway \ were varied. RGB and infrared imagery for free-flowing traffic conditions with a 
stationary camera were collected.  

 
Figure 22: Drone and Sensor Geometries 

 

5.3 CHOICE OF EXPERIMENTAL DESIGN 

5.3.1 Combinations of Response Variables in Experiments 

Table 10 presents the combinations of response variables for these experiments. For all 
experiments, the horizontal distance between the drone and the roadway (roadway offset DDR) 
was fixed at 100 ft. 

Table 10: Combinations of Response Variables in Experiments 
Traffic Intensity Height Above Ground DH 

(ft) 
Azimuth  

(deg) 
Depression  

(deg) 

Free-Flowing  
(without Congestion) or 

with Congestion 

50 
45 45 
90 70-90 
135 45 

100 
45 45 
90 70-90 
135 45 

200 
45 45 
90 70-90 
135 45 

300 
45 45 
90 70-90 
135 45 

400 
45 45 
90 70-90 
135 45 
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5.3.2 Selection of Image Processing Algorithms 

The pros and cons of representative vehicle detection algorithms documented in the literature are 
summarized in Table 11. First tested were algorithms on free-flow traffic, the focus of this study. 
Although background subtraction-based methods cannot apply to moving cameras, their fast 
computation time and ease of implementation make them a desirable option for detecting moving 
vehicles in real-time when the camera is static. The vehicle detection algorithms will be tested on 
congested traffic and with a moving camera during ongoing work not included in this report. 
Learning-based methods will be used, as they work well with low-speed objects and moving 
cameras. Single-stage deep neural networks (YOLO v4) will be used to conduct detection for 
congested traffic and a moving camera due to their higher accuracy and faster inference time.  

Table 11: Representative Methods and Their Pros and Cons in Vehicle Detection 

Method Background Subtraction-
based Methods Machine Learning 

Two-stage 
Deep Neural 

Networks 

Single-stage Deep 
 Neural Networks 

Algorithms Gaussian 
Mixture-
based  
background/ 
foreground 
segmentation 
algorithm 

Statistical 
background 
 image 
estimation and 
per-pixel 
Bayesian 
segmentation 

Cascade  
classifiers R-CNN family SSD YOLO 

Camera Stationary Stationary/moving 
Pros Low computation time, easy to 

implement 
Training relatively  
short compared to 
deep learning; low 
CPU power 
requirement 

High accuracy Trains faster  
than R-CNN; real-
time detection; 
good balance 
between accuracy 
and speed 

Cons Not for moving or vibrating 
camera; difficult to detect slow-
moving objects; many 
parameters to tune, often tricky 

Object shape  
needs to be 
consistent; change 
in rotation will 
affect performance 

High 
computation 
time; lengthy 
training time; 
GPU required 

GPU required; may 
be less accurate 
than R-CNN 

 
5.3.3 Summary of Research Approach 

Figure 21 describes the steps applied to detect vehicles in free-flow traffic with a stationary 
camera using an approach based on the background subtraction method. A Gaussian Mixture-
based Background/Foreground Segmentation Algorithm is used to create the background model 
(Zikovic, 2004). Input frames are fed into the background model to separate the foreground 
(moving objects) from the static background. A binary image is output, with the foreground 
mask representing the moving objects. The binary image is further processed by two 
morphological transformations, opening and dilation. The opening removes noise by conducting 
the erosion operation, followed by the dilation operation. Closing (reverse of opening, dilation 
followed by erosion) is applied after opening to remove small holes in the foreground objects. 
Contours are then generated based on the foreground masks. Noise is further filtered out by using 
a contour area threshold; any contours smaller than the threshold value are removed. Finally, the 
bounding boxes of detected vehicles are obtained according to the contour’s coordinates.  
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Figure 23: Background subtraction-based approach 

 
5.3.4 Performance Metrics  

To evaluate the performance of the image processing algorithms, performance metrics of 
precision and recall were calculated using the true positive (TP), false positive (FP), and false 
negative (FN) counts. The definition of precision and recall are as follows: 

݊݋݅ݏ݅ܿ݁ݎ݌                  = ்௉
்௉ାி௉

  (1) 

݈݈ܽܿ݁ݎ                   = ்௉
்௉ାிே

 (2) 

The F1 score was also calculated, which is the harmonic mean of precision and recall, taking 
both metrics into account.  

1ܨ                 = 2 × ௣௥௘௖௜௦௜௢௡×௥௘௖௔௟௟
௣௥௘௖௜௦௜௢௡ା௥௘௖௔௟௟

 (3) 
 

5.4 PERFORMING THE EXPERIMENTS 

5.4.1 Data Collection Sites 

The first step was determining the freeway and/or high-speed multi-lane road segments that 
would be suitable for data collection. Although the purpose of the study was to apply UAV video 
to identify non-recurrent congestion caused by incidents, it was difficult to capture such events 
with the limited time and effort of data collection. Thus, first investigated were historical crash 
data to identify freeway sections with higher historical crash rates. Small freeway segments in 
these sections where recurrent congestion is likely to occur during peak hours due to roadway 
capacity changes were then identified.  

In addition to the crash and congestion analysis described above, the sites had to meet specific 
requirements for flying a UAS. As it was not desirable to go through the process of obtaining a 
Certificate of Authorization from the FAA, which can be time-consuming, test locations outside 
of controlled airspace were selected. Figure 22 is an extract from the Visual Flight Rules 

Input 
frames 

Gaussian Mixture-based 
Background/Foreground 
Segmentation Algorithm 

Morphological 
transformation: 

Opening + Closing 

Contour 
generation 

Contour area 
threshold 

Bounding boxes 



47 
 

(VFR) Terminal Area Chart for Tampa. Tampa International Airport is the largest airport in the 
area and occupies the most airspace; no operations could be conducted in its Class B airspace, 
which extends down to the surface, limiting test site locations.  

 
Figure 24: VFR Terminal Area Chart of Tampa— 

Used to Ensure No Airspace Rules Broken During Data Collection 

The first road segment selected for data collection was along I-75, as shown in Figure 25. The 
team used an empty parking lot of a nearby establishment to launch the UAS. The location was 
north of exit 279 on I-75, which offered a clear space for visual line-of-sight operations and 
proximity to the interstate lanes. This location was used for data collection under free-flowing 
traffic conditions. Videos were recorded on Saturdays between 12:00–4:00 PM on clear days to 
ensure good video quality. This location was not used for congested conditions.  

The second segment, on I-275, was selected primarily for its high likelihood of congested 
conditions, as shown in Figure 26. The location was an empty parking lot adjacent to I-275 and 
next to an exit ramp that leads to E Bird St. Due to the location of the ramp, congestion was 
expected during afternoon peak hours on the right-side lanes. The road has an overpass and 
is elevated at the location due to the Hillsborough River and an arterial road underneath. Drone 
data showed an elevation difference of 30 ft from the parking lot to the surface of the interstate. 
This elevation was added to the height parameters so the height above the roadway was accurate.  

The parking lot next to I-275 was used as a launch site for all data collection under congested 
conditions. A ramp between the parking lot and the interstate added distance to the roadway from 
the drone. Data collection occurred on three Fridays between 4:00–6:00 PM during peak hours.  
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Figure 25: Location of Drone Operations for Uncongested Data Collection of I-75 Traffic 

“X” depicts location of drone operator and launch site; yellow line shows path of drone 
during collection at speed 

 

 
Figure 26: Location of Drone Operations for Congested Conditions on I-275 

“X” marks location of drone operator; yellow line shows path of drone  
during collection at speed 
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Data Collection Parameters 

To collect data needed for evaluation of the algorithms, the team created a set of parameters that 
would vary to establish comparison metrics for the different algorithms used. Each combination 
of parameters created a scenario, and video of traffic was recorded so the algorithms could be 
exercised and compared. Table 12 shows the selected parameters varied for the scenarios. Video 
was captured at heights of 50, 100, 200, 300, and 400 ft; azimuth angles of 45°, 90°, and 135°; 
drone velocities of 0 and 5 mph; and depression angles 45–90°. All videos were collected during 
clear sky conditions and in the afternoon. The offset from the road was kept at 100 ft, and each 
video was recorded for 2 min. The combinations of these parameters resulted in 48 different 
scenarios under free-flow conditions and another 48 under congested conditions. Both RGB and 
thermal cameras were used for collecting video data for these scenarios.  

Table 12: Scenarios for Data Collection  
Scenario 

No. 
Height 
(DH) 

Azimuth 
�ȥ� 

Velocity 
(v) 

Time of Day/Light 
Conditions 

 Depression 
$QJOH��Į� 

Offset (DDR) Video 
Length 
(min) 

1 50 ft, 
100 ft, 
200 ft, 
300 ft, 
400 ft 

45 

0– 
20 mph 

Afternoon–sunny  45 100 ft 
2 min each  

(96 min 
total) 

. 

. 

. 
90 Afternoon–sunny 

 
45 100 ft 

48 135 Afternoon–sunny  70–90 100 ft 
 

5.5 STATISTICAL ANALYSIS 

This Phase I final report presents the experimental results for a fixed station and free-flow traffic 
condition, comparing the performance of RGB and thermal sensors using the background 
subtraction-based approach described in the experimental design.  

When the drone was at a lower level, namely 100 ft or 200 ft AGL, with ߰ = 45° or 135°, the 
field of view from the camera could go as far as to the horizon, which made the vehicles very far 
from the drone. However, due to the small size of the far-away vehicles, the capability of the 
algorithm to identify the vehicles was reduced. Trial-and-error efforts were conducted to restrict 
the field of view length, and it was determined that the frame should be cut off by two fifths, 
with detection conducted only on the bottom three fifths of the frame. Traffic from both 
directions was detected, and a mask was used to cut off the frame and separate road directions. 
Figure 27 shows an example of detections on images with an azimuth angle ߰ = 135° from 50–
400 ft AGL after using a mask to cut off the frame and separate road directions.  
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Figure 27: Detection on Images (azimuth angle ࣒ = ૚૜૞°)  

After Using Mask to Cut Off Frame and Separate Road Directions 

Tables 13 and 14 show the comparison of RGB and thermal videos of 15 experimental scenarios 
(five heights 50ft, 100ft, 200ft, 300ft, 400ft AGL and three azimuth angles 45°, 90°, 135°). 
Detection results were collected on every 5th frame from the 200th to 700th frame for each 
video/scenario, and performance metrics were computed. For example, for a video of height ݄ଵ 
and azimuth angle ߰ଵ, we first manually counted ground truth (TP+FN) and TPs at each frame 
and collected the number of detected vehicles (TP+FN) using a background subtraction 
algorithm. Precision and recall could then be calculated, as could an F1 score given precision and 
recall: 

௛భ,టభ݊݋݅ݏ݅ܿ݁ݎܲ      =
σ ்௉೑೑

σ (்௉೑ାி௉೑)೑
  ݂ = {200, 205, 210, … ,700} (4) 

      ܴ݈݈݁ܿܽ௛భ,టభ =
σ ்௉೑೑

σ (்௉೑ାிே೑)೑
  ݂ = {200, 205, 210, … ,700} (5) 

Comparison of F1 scores for RGB and infrared images from different scenarios is shown in 
Figure 28. 
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Table 13: Performance Evaluation Outcomes of RGB Images 
RGB 50ft–45° 100ft–45° 200ft–45° 300ft–45° 400ft–45° 

Metrics South North South North South North South North South North 
TP 247 238 52 258 181 238 199 126 110 286 
FP 16 10 2 7 1 1 5 25 0 0 
FN 109 40 12 22 8 7 63 27 5 15 

Precision 0.939 0.960 0.963 0.974 0.995 0.996 0.975 0.834 1.000 1.000 
Recall 0.694 0.856 0.813 0.921 0.958 0.971 0.760 0.824 0.957 0.950 

F1 0.798 0.905 0.881 0.947 0.976 0.983 0.854 0.829 0.978 0.974  
50ft–90° 100ft–90° 200ft–90° 300ft–90° 400ft–90° 

Metrics South North South North South North South North South North 
TP 87 67 128 108 56 79 115 71 100 319 
FP 8 8 2 12 8 13 0 0 0 6 
FN 7 4 8 12 1 2 1 1 1 18 

Precision 0.916 0.893 0.985 0.900 0.875 0.859 1.000 1.000 1.000 0.982 
Recall 0.926 0.944 0.941 0.900 0.982 0.975 0.991 0.986 0.990 0.947 

F1 0.921 0.918 0.962 0.900 0.926 0.913 0.996 0.993 0.995 0.964  
50ft–135° 100ft–135° 200ft–135° 300ft–135° 400ft–135° 

Metrics South North South North South North South North South North 
TP 307 206 144 45 286 155 138 253 136 257 
FP 7 3 3 2 5 12 5 2 0 7 
FN 61 103 2 1 9 18 7 10 19 58 

Precision 0.978 0.986 0.980 0.957 0.983 0.928 0.965 0.992 1.000 0.973 
Recall 0.834 0.667 0.986 0.978 0.969 0.896 0.952 0.962 0.877 0.816 

F1 0.900 0.795 0.983 0.968 0.976 0.912 0.958 0.977 0.935 0.888 
 

Table 14: Performance Evaluation Outcomes of Thermal Images 
IFR 50ft–45° 100ft–45° 200ft–45° 300ft–45° 400ft–45° 

Metrics South North South North South North South North South North 
TP 167 234 54 237 174 223 221 144 111 251 
FP 7 13 0 2 0 0 0 1 1 12 
FN 184 43 8 40 15 20 41 9 4 48 

Precision 0.960 0.947 1.000 0.992 1.000 1.000 1.000 0.993 0.991 0.954 
Recall 0.476 0.845 0.871 0.856 0.921 0.918 0.844 0.941 0.965 0.839 

F1 0.636 0.893 0.931 0.919 0.959 0.957 0.915 0.966 0.978 0.893  
50ft–90° 100ft–90° 200ft–90° 300ft–90° 400ft–90° 

Metrics South North South North South North South North South North 
TP 73 67 107 98 55 72 94 57 85 287 
FP 14 39 1 0 13 23 25 49 2 30 
FN 17 3 21 20 3 9 21 16 16 47 

Precision 0.839 0.632 0.991 1.000 0.809 0.758 0.790 0.538 0.977 0.905 
Recall 0.811 0.957 0.836 0.831 0.948 0.889 0.817 0.781 0.842 0.859 

F1 0.825 0.761 0.907 0.907 0.873 0.818 0.803 0.637 0.904 0.882  
50ft–135° 100ft–135° 200ft–135° 300ft–135° 400ft–135° 

Metrics South North South North South North South North South North 
TP 261 183 129 35 165 100 134 244 140 261 
FP 40 2 2 0 33 1 3 24 5 4 
FN 107 124 2 0 161 96 10 10 13 52 

Precision 0.867 0.989 0.985 1.000 0.833 0.990 0.978 0.910 0.966 0.985 
Recall 0.709 0.596 0.985 1.000 0.506 0.510 0.931 0.961 0.915 0.834 

F1 0.780 0.744 0.985 1.000 0.630 0.673 0.954 0.935 0.940 0.903 
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Figure 28: F1 Scores of Different Scenarios by Road Direction and Video Band 

5.6 CONCLUSIONS AND RECOMMENDATIONS 

5.6.1 Conclusions 

The performance metrics statistics show overall that the background subtraction-based method 
applied in this project can achieve good detection performance on RGB images with most F1 
scores around 0.9. The lowest height (at 50 ft) tends to have the worst performance for different 
azimuth angles; this may be caused by the restricted frames that the camera can capture when the 
drone is low. When the height of the drone is higher, the performance of the algorithm gets better 
and is consistent for different angles, except 45° at 300 ft. The research team will scrutinize the 
video data and further study this result.  

Compared to RGB images, the results of F1 scores on infrared images show more variation from 
different azimuth angles at different drone heights. Overall, the performance was similar 
compared to the RGB images when the drone was hovering at 100 ft and 400 ft AGL. However, 
when the drone was hovering at 200 ft and 300 ft AGL, some of the azimuth angles show very 
low F1 scores, which could be caused by infrared images being more sensitive to noise than 
RGB images when applying background subtraction-based methods. In the Gaussian Mixture-
based Background/Foreground Segmentation Algorithm, there is a parameter that sets the 
threshold on the squared Mahalanobis distance between the pixel and the model. This parameter 
was used to decide whether a pixel is well-described by the background model. To remove 
additional noise from infrared images, this parameter needs to be increased to include the noise 
in the background rather than outputting them as foreground; as a result, some vehicles that 
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should output as foreground would be mistakenly labeled as background, leading to declining 
recall values. On the other hand, precision may be impacted when achieving a higher recall by 
decreasing the threshold. In the end, F1 scores are likely to be impacted by a reduction in recall 
or precision due to noise.  

5.6.2 Recommendations 

Based on the literature review, practitioners lack a tool that can provide real-time incident 
detection without violating privacy protection. Therefore, this study explored real-time vehicle 
detection algorithms using both visual and infrared cameras. The application of UAS with 
different sensing technologies for obtaining real-time traffic operational information of freeways 
was explored. Video data in both visual and infrared bands were collected along interstate 
highways in the Tampa area, and experiments were conducted to quantify the performance of a 
real-time background subtraction-based method in vehicle detection from a stationary camera 
(drone hovering at a fixed station) under free-flow conditions. Finally, the relationship between 
experimental parameters and performance metrics was analyzed.  

The experiment outcomes show that, overall, the background subtraction-based method applied 
in this study can achieve good detection performance on RGB images, with most F1 scores 
around 0.9. Compared to RGB images, the performance of infrared images had more variations 
from different azimuth angles, with only some F1 scores better than or comparable to RGB 
images. This is because infrared images are more sensitive to noise, which affects precision. To 
reduce noise, the threshold on the squared Mahalanobis distance could be increased to include 
those noise to the background, which will improve the precision but will inevitably impact recall. 
For background subtraction-based methods, the detection performance of infrared images has the 
potential to outperform RGB images if the camera is stable and there is little noise. Additional 
trial-and-error efforts need to be conducted to investigate the most effective way to minimize 
noise when using thermal images.  
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CHAPTER 6: CONCLUSIONS OF PHASE I AND  
NEXT STEPS IN PHASE II  
State DOTs are using UAS for different purposes in all the US states and territories, with 
inspections being the most common at 53 percent of total activities and only 18 percent 
dedicated to roadway conditions. Haynes (2021), at the Innovative Applications in 
Transportation Infrastructure using Unmanned Aerial Systems (UAS) Congress, presented 
surface transportation programs using UAS in the USDOT-initiated experimentation in 2010. 
Currently, wide-scale deployment of drones is implemented in 100 percent of USDOT surface 
transportation activities. A potential saving of 40–70 percent in these activities can be reached 
using drones. By 2023, the use of drones in surface transportation programs is expected to triple 
the current market of 2.7 million, with significant improvements in accuracy and overall worker 
safety.  

A valuable application of UAS in surface transportation is traffic monitoring and incident 
detection, as emphasized during the ongoing pandemic. COVID-19 has greatly affected how 
people live and function, and UAVs have proven that they can work during a pandemic to 
ameliorate certain aspects of everyday life. An example not related to transportation is that UASs 
have been used for monitoring the streets for compliance with community quarantine guidelines 
so task forces do not compromise their health and for patrolling the streets in a safe manner 
(Hinthorn, 2020). Similar functions could be achieved in transportation by flying UASs with 
sensors and applying efficient algorithms to detect abnormal conditions of traffic operations.  

In Phase I of the corridor monitoring project, the research team developed a protocol of using 
UASs to ensure the safe operations of UASs in surface transportation applications, specifically 
for freeway and high-speed multilane facilities. The protocol is constantly being calibrated with 
the procedures and safety requirements that must be implemented in the before, during, and after 
of flying a drone with the pilot drone training. The research team also developed training 
materials, trained operators, and obtained pilot-in-command licenses. After careful comparison, 
the research teams purchased drones within the budget of the project. Following guidelines for 
designing an experiment, the research team designed the experiments (data collection sites, 
response variables) and collected RGB and thermal videos in the Tampa Bay area and conducted 
performance evaluation of Gaussian Mixture-based Background/Foreground Segmentation 
Algorithm for both RGB and thermal image data. Based on the outcomes of the experiments, for 
achieving better performance of processing thermal image data, the research team recommends 
exploring more effective ways of reducing noise while analyzing thermal images.  

In Phase II of the project, the research team will identify additional sites in both Tampa and 
Mayagüez, collect more RGB and thermal image data, and explore ways of improving the image 
processing algorithm, not only the background/foreground segmentation algorithm but also a 
learning algorithm that could be used for analyzing images collected from moving platforms. 
The team also will develop algorithms to detect non-recurrent congestion possibly caused by 
incidents. The team will work closely with local TMCs and incorporate their comments and 
suggestions into the project development.  
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Specifically, four objectives of the Phase II research will be as follows.: 

x Advance the current state of the art in freeway automatic incident detection using image 
data from RGB cameras and thermal sensors and compare the performance of different 
sensing technologies. 

x Develop a protocol for integration and implementation of UASs in Traffic Incident 
Management (TIM) at a district TMC into existing incident detection systems. 

x Identify barriers and challenges of implementing emerging technologies in automatic 
incident detection and provide suggestions and future research directions. 

x Strengthen mutual collaboration and lessons learned associated with incident 
management with TMCs in both Puerto Rico and Florida for the benefit of reducing 
recurrent and non-recurrent traffic congestion and improving corridor safety for all 
present and future road users. 
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APPENDIX A: DEFINITIONS 
14 CFR Part 107: The pilot must have a valid Part 107 Remote Pilot License and Airworthiness 
Certificate for a drone. Before flying a commercial drone, the operator must obtain an FAA 
license. The FAA online registration system for drones went into effect on December 21, 2015, 
and required all UAS weighing more than 0.55 lbs (250 grams) and less than 55 lbs to be 
registered.  

Average Annual Daily Traffic (AADT): Traffic on a typical day of the year.  

Capacity: Capacity changes dynamically based on the degree of weather (e.g., ponding, snow 
drifts, wind debris, etc.), degree of work zone interference, degree of traffic incident severity, 
and other nonrecurring events. The HCM defines capacity as “The maximum sustainable flow 
rate at which vehicles or persons reasonably can be expected to traverse a point or uniform 
segment of a lane or roadway during a specified time period under given roadway, geometric, 
traffic, environmental, and control conditions.” 

Corridor: A corridor is a set of essentially parallel and competing facilities and modes with 
cross-connectors that serve trips between two designated points. A corridor contains several 
subsystems of facilities—freeway, rural highway (also called two-lane highway), arterial (also 
called urban street), transit, pedestrian, and bicycle. Each subsystem is composed of one or more 
facilities that, in turn, are composed of segments and points. The procedure requires the division 
of the facilities within each corridor into subsections, or segments, with points at the end of each 
segment. Traffic demand and capacity conditions are relatively constant over the length of a 
segment. Points are places where traffic enters, leaves, or crosses the facility, such as 
intersections or ramp merges. 

Congestion: Congestion results when traffic demand approaches or exceeds the available 
capacity of the roadway system. It should be considered in two dimensions: spatial and temporal, 
including the where and when. Predicting this can be the first step in combating congestion. 
Results from one or the interaction of several of the seven sources on the roadway system. This 
interaction can be complex and can vary greatly from day-to-day and roadway-to-roadway. The 
seven sources are traffic incidents, work zones, weather, fluctuation of normal traffic, special 
events, Traffic Control Devices, physical bottlenecks. 

Density: Density is the number of vehicles occupying a given length of a lane or roadway at a 
particular instant, a critical parameter for uninterrupted-flow facilities because it characterizes 
the quality of traffic operations. It describes the proximity of vehicles to one another and reflects 
the freedom to maneuver within the traffic stream. 

Focal Length and Field of View: Focal length has an inverse relationship with the field of view 
(FOV). As the focal length is shorter the field of view is larger and vice versa. (Understanding 
Focal Length and Field of View, n.d.)  

Freeway Facilities: An extended length of a single freeway composed of a set of connected basic 
freeways, weaving, and merge and diverge segments. Basic Freeway: The portions of a freeway 
outside the influence area of any on- or off-ramps. Weaving: The portions of a freeway where an 
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on-ramp is closely followed by an off-ramp and entering or exiting traffic must make at least one 
lane change to enter or exit the freeway. Ramps: A length of roadway providing an exclusive 
connection between two highway facilities; the facilities connected by a ramp may consist of 
freeways, multilane highways, two-lane highways, suburban streets, and urban streets. Merge and 
Diverge: The portions of a freeway where traffic enters or exits without having to change lanes to 
enter or leave a through traffic lane.  

Highway Performance Monitoring System (HPMS): FHWA define the HPMS as national 
level highway information system that includes data on the extent, condition, performance, use 
and operating characteristics of the nation's highways. It contains administrative and extent of 
system information on all public roads, while information on other characteristics is represented 
in HPMS as a mix of universe and sample data for arterial and collector functional systems. 
Limited information on travel and paved miles is included in summary form for the lowest 
functional systems. 

Incidents: The transportation literature, transportation agencies and officials tend to define 
incidents differently. Traffic Incident Management Handbook defines an incident as "any non-
recurring event that causes a reduction of roadway capacity or an abnormal increase in demand." 
Under this definition, events such as traffic crashes, disabled vehicles, spilled cargo, highway 
maintenance and reconstruction projects, and special non-emergency events (e.g., ball games, 
concerts, or any other event that significantly affects roadway operations) are classified as an 
incident. (Federal Highway Administration, 2000). Traffic Management Data Dictionary 
(TMDD), as published by ITE and AASHTO, defines an incident as "an unplanned randomly 
occurring traffic event that adversely affects normal traffic operations." Developers of the 
TMDD distinguish incident conditions from planned activities, such as roadwork or maintenance 
activities by defining different data elements and message sets for both incident and planned 
roadway events. ((MS/ETMCC), n.d.). The 2000 Highway Capacity Manual defines an incident 
as being “any occurrence on a roadway that impedes normal traffic flow” (Transportation 
Research Board, 2000). These definitions are very similar, they tend to suggest that within the 
transportation community, different officials tend to define incidents slightly differently. The 
Manual on Uniform Traffic Control Devices (MUTCDs) classified traffic incidents into three 
categories—Major Traffic Incident – any traffic incident terms as the major incident if it takes 
more than 2 hours to clear the traffic; Intermediate Traffic Incident – incident duration 30 
minutes to 2 hours; Minor Traffic Incident – incident duration less than 30 minutes. 

Level of Service: The Highway Capacity Manual (2010) defines level of service as a 
quantitative stratification of a performance measure or performance measures that represent 
quality of service. Quality of service describes how well a transportation facility or service 
operates from a traveler’s perspective. LOS is a mechanism used to determine how well a 
transportation facility is operating from a traveler’s perspective. Typically, six levels of service 
are defined, and each is assigned a letter designation from A to F, with LOS A representing the 
best operating conditions, and LOS F the worst. Volume-to-capacity (V/C) ratio for traffic can be 
used for generalized planning, such as that used in the RTP to identify study areas. When using a 
V/C ratio, demand (volume) is compared to the estimated capacity of each roadway during the 
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evening peak period. The V/C ratio is separated into six levels and assigned a letter from A to F 
(TRPC, 2016). 

Queue (Bottleneck): A localized constriction of traffic flow; a localized section of highway that 
experiences reduced speeds and inherent delays due to a recurring operational influence or a 
nonrecurring impacting event. 

Split Plot Design: A special case of a factorial treatment structure. It is used when some factors 
are harder (or more expensive) to vary than others. A split plot design consists of two 
experiments with different experimental units of different “size” (Lukas Meier, n.d.). 

Traffic Management Center (TMC): A vital unit of ITS, mainly a technical system 
administered by the transportation authority. This center works detecting traffic incidents, 
coordinating the response to address these events, monitoring, and managing vehicle congestion, 
and distributing information to users of transit conditions on public roads. A TMC may be 
responsible for managing freeway operations, arterial highway operations, heavy rail operations, 
transit operations, or a combination of these. A TMC’s focus may be urban or rural, regional, or 
statewide. It may be single or multi-jurisdictional. TMC staff also may partner with other 
agencies to cover these variety of transportation networks, including police and transit. (Alan 
Toppen, 2019) Here all data is collected and analyzed for further operations and control 
management of the traffic in real time or information about local transportation 
vehicle.(Choudhary, 2019) 

UAS (Drones): Small aircraft that can be easily controlled from a smartphone, capable of 
carrying cameras or other electrical devices and sensors, which is why they are used in countless 
scientific and commercial projects. 

Uninterrupted Flow Facilities: Freeways, pure uninterrupted flow, multilane highway: sections 
of multilane highways (4 or 6 lane) that are more than two miles from the nearest point of fixed 
operation; rural two-lane highways: sections of two-lane highways (one lane in each direction) 
that are more than two miles from the nearest point of fixed operation 

 

 
 
 
 
 
 
 
 
 
 
 
 
 



70 
 

APPENDIX B: VIRTUAL MEETINGS 
 

 

 
NICR 4-3 Outreach Activity: Presentation for High Schools Students,  

 Aguas Buenas High School, March 30, 2021 
 

 
NICR 4-3 Outreach Activity: Presentation for High Schools Students,  

 Genaro Cautiño Specialized School in Science and Mathematics, April 8, 2021 
 



71 
 

 
Sample Frame from Drone Video for NICR 4-3 High Schools Outreach Activities  

 

 
Sample Frame from Drone Video for NICR 4-3 High Schools Outreach Activities 
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 Joint NICR 4-3 USF-UPRM Monthly Meeting  

 

 
Joint NICR 4-3 USF-UPRM Monthly Meeting Agenda  
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APPENDIX C. FLIGHT DOCUMENTS 
 

FLIGHT PLAN TEMPLATE 
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INCIDENT REPORT TEMPLATE 
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